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Abstract

This work develops non-asymptotic theory for estimation of the long-run variance matrix and its
inverse, the so-called precision matrix, for high-dimensional time series under general assump-
tions on the dependence structure including long-range dependence. The estimation involves
shrinkage techniques which are thresholding and penalizing versions of the classical multivariate
local Whittle estimator. The results ensure consistent estimation in a double asymptotic regime
where the number of component time series is allowed to grow with the sample size as long as
the true model parameters are sparse. The key technical result is a concentration inequality
of the local Whittle estimator for the long-run variance matrix around the true model param-
eters. In particular, it handles simultaneously the estimation of the memory parameters which
enter the underlying model. Novel algorithms for the considered procedures are proposed, and
a simulation study and a data application are also provided.

1 Introduction

Spectral density matrices characterize the component and temporal dependence of multivariate
time series, and its estimation is of interest in many areas, including economics and neuroscience.
The long-run variance and precision matrices give, respectively, information about correlations and
partial correlations between different component series around zero frequency; see Dahlhaus (2000).
Their estimation are the frequency domain analogues of covariance and inverse covariance estima-
tion; see Fan, Liao, and Liu (2016) for a survey on large (inverse) covariance matrix estimation.
Obtaining an estimate for the spectral density matrix can become particularly challenging in a high-
dimensional regime when the number of component series becomes relatively large compared to the
length of the time series. In this regime, estimation often employs different shrinkage methods.
The development, theoretical verification and application of different shrinkage methods has been
an active research area, along with a growing interest in non-asymptotic theory in high-dimensional
statistics; see Wainwright (2019) for a survey on non-asymptotic theory.
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This paper develops non-asymptotic theory for estimation of the long-run variance and precision
matrices of a stationary multivariate time series around zero frequency while allowing for short-
and long-range dependence. The local Whittle estimation is used with thresholding and LASSO-
type penalizations. Our non-asymptotic theory allows to infer consistency results on the estimators
around the true parameters in a high-dimensional regime where the number of component series
can be large compared to the number of observations. We also note that our non-asymptotic results
are new even for the one-dimensional case.

Our setting is as follows. Consider a p-dimensional second-order stationary time series Xn =
(X1,n, . . . , Xp,n)′, n ∈ Z, with zero mean and autocovariance matrix function ΓX(k) = EXn+kX

′
n,

k ∈ Z. Suppose that its spectral density matrix fX(λ), λ ∈ (−π, π), related to the autocovariance
matrix through ΓX(k) =

∫ π
−π e

ikλfX(λ)dλ, satisfies

fX(λ) = λ−D0G(λ)λ−D0 , G(λ) ∼ G0, as λ→ 0+, (1.1)

where ∼ denotes componentwise asymptotic equivalence, D0 = diag(d0,1, . . . , d0,p) with d0,r ∈
(−1/2, 1/2), r = 1, . . . , p, λ−D0 = diag(λ−d0,1 , . . . , λ−d0,p) and G0 = (G0,rs)r,s=1,...,p is Hermitian
symmetric and positive definite. Each individual component series Xr,n, n ∈ Z, satisfies (1.1) with
memory parameter d0,r. The case d0,r = 0 is associated with short-range dependence, the case
d0,r > 0 with long-range dependence and d0,r < 0 with antipersistence. We refer to Beran, Feng,
Ghosh, and Kulik (2013), Pipiras and Taqqu (2017) for more details on univariate short- and long-
range dependence and Kechagias and Pipiras (2015a) for a discussion on multivariate long-range
dependence. The matrix G0 is the long-run variance matrix and P0 = G−1

0 is the precision matrix.
They are the focus of this work.

In the presence of long-range dependence, local Whittle estimation is commonly used to es-
timate the parameters (D0, G0) of the model (1.1). We introduce here the classical multivariate
local Whittle estimators for (D0, G0) and refer to Section 2 for a detailed explanation of the used
shrinkage techniques. In particular, we aim to utilize a thresholding technique to estimate the
long-run variance matrix G0 sparsely (see (2.2) below) and a LASSO-type estimator to estimate
the precision matrix P0 sparsely (see (2.3) below).

The local Whittle estimators (D̂, Ĝ) introduced in Robinson (2008) are given by

(D̂, Ĝ) = argmin
(D,G)

`(D,G) (1.2)

for the negative log-likelihood

`(D,G) =
1

m

m∑

j=1

(log |λ−Dj Gλ−Dj |+ tr(IX(λj)λ
D
j G
−1λDj )), (1.3)

where | · | := det(·) and tr(·) denote the determinant and the trace of a matrix,

IX(λ) =
1

2πN

( N∑

n=1

Xne
inλ
)( N∑

n=1

Xne
inλ
)∗

(1.4)

is the periodogram for sample size N and m is the number of Fourier frequencies λj = 2πj/N used
in estimation. The optimization problem (1.3) can be reduced to

D̂ = argmin
D

R(D) with R(D) =
1

m

m∑

j=1

log |λ−Dj Ĝ(D)λ−Dj |, (1.5)
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where

Ĝ(D) =
1

m

m∑

j=1

λDj IX(λj)λ
D
j . (1.6)

Local Whittle estimation was studied by multiple authors. Robinson (1995b) showed consistency
and asymptotic normality of the univariate local Whittle estimators. In the bivariate case p =
2, the asymptotic normality of the local Whittle estimators of memory parameters d0,1, d0,2 was
established in Robinson (2008), and that of all model parameters in Baek, Kechagias, and Pipiras
(2020). Asymptotic normality results in special cases of (1.1) but general fixed dimension p appear
in Shimotsu (2007), Nielsen (2011). In Düker and Pipiras (2019), an asymptotic normality result
for the local Whittle estimators (1.2) of all model parameters and general fixed p was obtained.

The graphical local Whittle estimator is an l1-penalized version of the negative log-likelihood
in (1.3), as proposed in Baek, Kechagias, and Pipiras (2017) with the focus on its good numerical
performance. It can also be written as a function of the precision matrix P0. We refer to Section
2 and equation (2.4) below for a detailed description of the penalized objective function. The
objective function coincides with that used in estimating covariance matrices sparsely; see Bien
and Tibshirani (2011). On the other hand, for a penalization of the respective inverse, it coincides
with the graphical LASSO estimator; see Friedman, Hastie, and Tibshirani (2008). Düker and
Pipiras (2019) derived asymptotic results for the estimators of the long-run variance matrix and
the precision matrix in a “fixed p, large N” regime under the discussed l1-penalization.

Sparse covariance and its precision matrix estimation were studied by numerous authors. LASSO-
type estimators were investigated by Rothman, Bickel, Levina, and Zhu (2008), Cai, Liu, and Luo
(2011) and Shu and Nan (2019). See also Cai, Ren, and Zhou (2016) for a review of recent devel-
opments. Thresholding based strategies were pursued by Bickel and Levina (2008a,b), Rothman,
Levina, and Zhu (2009) and Cai and Liu (2011). In contrast, there is less research work for high-
dimensional spectral density matrix estimation.

The works of Shu and Nan (2019), Sun, Li, Kuceyeski, and Basu (2018) and Fiecas, Leng,
Liu, and Yu (2019) are probably the closest to our work. Shu and Nan (2019) considered the
estimation of large covariance and its precision matrices from high-dimensional sub-Gaussian or
heavier-tailed observations with slowly decaying temporal dependence. Sun et al. (2018) developed
a non-asymptotic theory for estimation of the spectral density matrix of multivariate time series
under short-range dependence, that is, when D0 ≡ 0 in (1.1). The work in Fiecas et al. (2019)
developed some non-asymptotic theory for estimation of the spectral density matrix and its inverse
for a class of time series exhibiting short-range dependence under a mixing condition. In contrast,
we allow for a quite general dependence structure including short- and long-range dependence and
antipersistence.

From a practical perspective estimating the spectral density matrix and its inverse have appli-
cations in many fields including signal processing (Schneider-Luftman and Walden, 2016), neuro-
science (Fiecas and Ombao, 2011; Bowyer, 2016; Bordier, Nicolini, and Bifone, 2017) and economics
(Granger, 1969; Hansen and Sargent, 1983; Politis, 2011; Plagborg-Møller and Wolf, 2021; Cavic-
chioli, 2022). The spectral density matrix captures contemporaneous correlation and correlation
across different lags. It therefore provides a richer description of the dependence structure in a
multivariate time series than the covariance matrix.

The literature review shows that there is a gap in theoretical results concerning high-dimensional
spectral density estimation for time series possibly exhibiting long-range dependence. We are the
first to provide non-asymptotic theoretical results for thresholding and graphical local Whittle es-
timation which allow to infer consistency in a possibly double asymptotic regime of large p and N .
The presence of long-range dependence and the simultaneous estimation of the memory parameters
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D0, make it particularly challenging to derive non-asymptotic results. We overcome those challenges
by using a uniform concentration inequality and controlling the difference between the sample and
the population version of the matrix D0 simultaneously. Our theoretical results turn out to be useful
not only for thresholding and graphical local Whittle estimators but can be applied to derive consis-
tency for other kinds of penalized estimators. We demonstrate that by deriving consistency results
for estimators based on the coherence matrix and a constrained l1-minimization (CLIME). We also
address the question of consistent model selection by adopting different thresholding procedures
to the spectral setting. Additionally, we introduce novel algorithms to compute the thresholded
and penalized local Whittle estimators. The results are accompanied by a simulation study which
assesses the numerical performance of the suggested algorithms and estimators.

The rest of the paper is organized as follows. In Section 2, we discuss our estimation procedure
and present some assumptions required for our theoretical analysis. In Section 3, we present an
outline of the proof, our main results and some discussions of those results. Appendix A provides
more technical details for the statements of our results, allowing to keep the notation in the paper’s
main body shorter. In Section 4, we introduce two algorithms to compute the penalized graphical
local Whittle estimators. The performance of those algorithms is analyzed in a simulation study
conducted in Section 5 with complementary results in Appendix F. An application can be found in
Section 6. We conclude with Section 7. The proofs can be found in Appendix B. In Appendices C
and D, we provide some technical results and their proofs. Finally, Appendix E provides the proofs
for an extension to linear processes.

Notation: For the reader’s convenience, we give a collection of notation used throughout the
paper. We denote the maximum and minimum eigenvalues of a symmetric or Hermitian matrix
A by λmax(A) and λmin(A), respectively. To indicate that a matrix A is positive (semi-)definite,
we write A � 0 (A < 0). We use a range of different matrix norms, namely, the maximum norm,
the spectral norm and the Frobenius norm, defined respectively as ‖A‖max = max1≤r,s≤p |Ars|,
‖A‖ =

√
λmax(A′A) and ‖A‖F =

√
tr(A′A) for a matrix A. We use er to denote the rth unit

vector in Rp for r = 1, . . . , p. For the vectorized version of a matrix A, we write vec(A). The vec
operator transforms a matrix into a vector by stacking its columns one underneath the other. For
a p × N matrix, composed of N p-dimensional vectors v1, . . . , vN , we write [v1 : · · · : vN ]. We let
L2(0, 1) be the space of square-integrable functions on (0, 1) with respect to the Lebesgue measure.
If A is an integral operator on L2(0, 1) of the form (Af)(x) =

∫ 1
0 k(x, y)f(y)dy, then A is called

Hilbert-Schmidt if and only if ∫ 1

0

∫ 1

0
|k(x, y)|2dxdy <∞, (1.7)

where the double integral in (1.7) is denoted as ‖A‖22 and called the Hilbert-Schmidt norm.
Let further A : V → W be a linear operator with normed spaces V,W . We write ‖A‖op =
supx6=0 ‖Ax‖W /‖x‖V for the operator norm of A, where ‖ · ‖W denotes the norm on W . As a
further convention we write a % b if there exists a universal constant c such that a ≥ cb. We further
use the notation ∂

∂x to denote the partial derivative with respect to x and ∇ to denote the gradient

∇f =
∑p

r=1 er
∂
∂xr

f of a function f : Rp → R.

2 Estimation methods and assumptions

In this section, we formulate the long-run variance and precision matrix estimation through the
thresholding and graphical local Whittle estimators, respectively. Furthermore, we give the required
assumptions to prove non-asymptotic bounds which ensure consistency results for the estimators
in a double asymptotic regime of large p and N .
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The thresholding and graphical local Whittle estimators require estimation of the memory
parameters D0 = diag(d0,1, . . . , d0,p). We propose here to estimate each d0,r, r = 1, . . . , p, by the
univariate local Whittle estimator; see Remark 2.2 below for a discussion of this. We introduce a
notation different from that used for the multivariate local Whittle estimators in (1.2) to emphasize
the use of the univariate version of the local Whittle estimator. For a multivariate time series
satisfying (1.1), each individual, univariate time series {Xr,n}n∈Z, r = 1, . . . , p, satisfies

fX,rr(λ) = λ−2d0,rgr(λ), gr(λ) ∼ g0,r, as λ→ 0+,

where gr(λ) = Grr(λ), g0,r = G0,rr, and fX,rs(λ) and Grs(λ) denote the (r, s)th entry of fX(λ) and
G(λ), respectively. Then, the univariate local Whittle estimator for d0,r is given by

d̂r = argmin
d∈Θ

Rr(d) with Rr(d) =
1

m

m∑

j=1

log(λ−2d
j ĝr(d)), (2.1)

where the set of admissible estimates is defined as Θ = {d | ∆1 ≤ d ≤ ∆2} with −1
2 < ∆1 < ∆2 <

1
2

and

ĝr(d) =
1

m

m∑

j=1

λ2d
j IX,rr(λj),

where IX,rs(λ) denotes the (r, s)th entry of the periodogram IX(λ) in (1.4). After estimating each
individual memory parameter d0,r by (2.1), we want to estimate the long-run variance matrix
G0 and the precision matrix P0 sparsely by thresholding and graphical local Whittle estimation,
respectively.

Thresholding local Whittle: We propose to use hard thresholding to estimate the long-run
variance matrix sparsely. (Soft or adaptive thresholding could also be used.) That is,

Tρ(Ĝrs(D̂)) =

{
Ĝrs(D̂), if |Ĝrs(D̂)| ≥ ρ,
0, if |Ĝrs(D̂)| < ρ,

(2.2)

where ρ > 0 is a threshold and Tρ(·) is a thresholding operator applied to Ĝrs(D̂), the (r, s)th entry

of the estimator for the long-run variance matrix (1.6) and the components of D̂ are estimated
univariately by (2.1).

Graphical local Whittle: The precision matrix P0 = G−1
0 can be estimated sparsely by the

graphical local Whittle estimator, a penalized version of the negative log-likelihood function (1.3).
The penalized estimator P̂ρ is given by

P̂ρ = argmin
P�0

`ρ(D̂, P ), (2.3)

where D̂ is estimated univariately by (2.1) and

`ρ(D,P ) = − 1

m

m∑

j=1

log |λDj PλDj |+ tr(Ĝ(D)P ) + ρ‖P‖1,off (2.4)

with a penalty parameter ρ > 0 and the l1-norm ‖ · ‖1,off excluding the diagonal elements.
Next, we give some assumptions, required to establish our theoretical results. Other assumptions

appear in the statements of our results. Subsequently, we discuss those assumptions in several
remarks.
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Assumption 1. Suppose that

fX(λ) = λ−D0G(λ)λ−D0 , G(λ) ∼ G0, (2.5)

where ∼ denotes componentwise asymptotic equivalence, G0 = (G0,rs)r,s=1,...,p is Hermitian sym-
metric and positive definite and D0 ∈ {D ∈ Mdiag | ∆1Ip 4 D 4 ∆2Ip}, where Mdiag denotes the
set of all real-valued diagonal matrices. We further suppose that the positive eigenvalues of G0 can
be bounded from below as

λmin(G0) ≥ k > 0. (2.6)

Assumption 2. For some q ∈ (0, 1], the spectral density matrix satisfies

|fX,rs(λj)− λ−d0,r−d0,sj G0,rs| ≤ cG,1λ
2q−d0,r−d0,s
j (2.7)

for j = 1, . . . ,m and some cG,1 > 0.

Assumption 3. The function fX,rs(λ) is differentiable on λ ∈ (−π, π)\{0} and there is a constant
cG,2 > 0 such that ∣∣∣ ∂

∂λ
fX,rs(λ)

∣∣∣ ≤ cG,2λ
−1−d0,r−d0,s .

Besides assumptions on the spectral density matrix of the underlying process, we will also
impose some mild assumptions on the process itself. In particular, our results are valid not only
for Gaussian time series but also for a large class of non-Gaussian processes. Our assumption will
be formulated in terms of sub-Gaussian random variables, that is, their distribution is dominated
by a centered Gaussian distribution. More precisely, we call a random variable X sub-Gaussian if
there is a constant c such that

E(|X|r) 1
r ≤ cr 1

2 for all r ≥ 1.

We further denote ‖X‖φ = supr≥1 r
− 1

2E(|X|r) 1
r , the sub-Gaussian norm of a real-valued random

variable X. Gaussian random variables belong to the class of sub-Gaussian random variables. We
refer to Vershynin (2010) for more details on sub-Gaussian random variables.

Assumption 4. The time series {Xn} is assumed to be either Gaussian or to have a linear represen-
tation Xn =

∑
j∈Z Ψj εn−j with

∑
j∈Z ‖Ψj ‖2F < ∞ and independent mean 0 innovations {εj}j≥1,

where each component εr,j , r = 1, . . . , p of the random vector εj is assumed to be sub-Gaussian,
satisfying

‖εr,j‖φ ≤ γ (2.8)

for some constant γ ∈ (0,∞).

Assumption 5. The number of frequencies m = m(N) used in estimation and the lower bound of
the interval of admissible estimates ∆1 satisfy

m % N−2∆1 .

Our work intends to provide non-asymptotic results. However, we impose some mild as-
sumptions on our choices of the number of frequencies m and the sample size N to simplify
some of our bounds. Throughout the paper we suppose that the number of frequencies and the
sample size satisfy m,N > 2. Those assumptions allow us to use log(m) + 1 ≤ 2 log(m) and
log(m) + 1 ≤ (log(m) + 1)2, and the same for N . Another assumption we impose is m ≤ N

2 − 1
which ensures that the bound on the bias term of the periodogram is finite.
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We use different measures of sparsity for the long-run variance and the precision matrices. Both
are commonly used in the respective literatures.

In the context of thresholding, a commonly used measure of sparsity for the long-run variance
matrix G0 is given by

‖G0‖aa = max
r=1,...,p

p∑

s=1

|G0,rs|a (2.9)

for a ∈ [0, 1). This measure was proposed in Bickel and Levina (2008b) and shown to capture a
variety of sparsity patterns. It was further applied in the context of spectral density estimation in
a non-asymptotic regime in Sun et al. (2018).

For the precision matrix, we define the set

S = {(r, s) | P0,rs 6= 0, r 6= s} (2.10)

and bound its cardinality with | S | ≤ s.
We will also use

|||G||| = ess sup
λ∈(−π,π)

‖G(λ)‖ = ess sup
λ∈(−π,π)

‖λD0fX(λ)λD0‖

as a measure of stability of the time series {Xn}. This follows Basu and Michailidis (2015) and
Sun et al. (2018) who considered the case G(λ) ≡ fX(λ) and D0 ≡ 0, which is associated with
short-range dependence of the underlying time series. See also the second paragraph of Section 2
in Sun et al. (2018) for a discussion on how |||G||| acts as a measure of stability.

The following remarks comment on the model, estimation procedure and on the assumptions
above. Remark 2.1 comments on the model and Remark 2.2 concerns estimating the memory
parameters univariately, Remark 2.3 is on Assumptions 1 and 2, and Remarks 2.4, 2.5 and 2.6 are
on Assumptions 3, 4 and 5, respectively.

Remark 2.1. In this work, we assume that the matrix G0 in (1.1) is possibly complex valued
Hermitian symmetric. In order to achieve sparsity, both real and imaginary part need to be zero.
Related literature has also studied an alternative way to parametrize the matrix G0. Proposed by
Robinson (2008) and further studied in Düker and Pipiras (2019) and Baek et al. (2020), one can
write G0 in terms of polar coordinates, that is,

G0 = (ωkle
sign(k−l)iφkl)k,l=1,...,p

with the so-called phase parameter φkl ∈ (−π/2, π/2) and ωkl ∈ R. In this parametrization,
one cannot test for uncorrelatedness between component series (ωkle

sign(k−l)iφkl = 0), since the
respective phase parameter φkl is not identifiable for ωkl = 0, k 6= l; see Düker and Pipiras (2019)
and Baek et al. (2020) for a related discussion.

Remark 2.2. Our proposed estimation procedure involves estimating the memory parameters
d0,1, . . . , d0,p by the univariate local Whittle estimators (2.1) rather than using the multivariate
estimator of the matrixD0 = diag(d0,1, . . . , d0,p) in (1.5). The reasons are twofold, one is theoretical,
the other computational.

The theoretical reason is that getting a concentration inequality on ‖D̂−D0‖max for the multi-
variate estimates of D0 involves a concentration inequality on | log |Ĝ(D̂)|− log |G0||. In the asymp-
totic regime N → ∞ and for fixed dimension p, a consistency result for | log |Ĝ(D̂)| − log |G0||
can be achieved easily by combining the continuous mapping theorem and a consistency result
on ‖Ĝ(D̂) − G0‖max. However, our non-asymptotic setting involves an inequality of the form
| log |Ĝ(D̂)| − log |G0|| ≤ Cp‖Ĝ(D̂) − G0‖, with a generic constant C. The additional p weakens
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the results in the sense that p has to grow much slower than m in order to achieve consistency.
Bounding further as ‖Ĝ(D̂)−G0‖ ≤ p‖Ĝ(D̂)−G0‖max results in an additional p. A potential way
to avoid the second p one gets through bounding the operator norm might be to impose a sparsity
assumption on G0 and threshold Ĝ in the objective function (1.5). That is, estimating D0 as in
(1.5) involves an estimator for G0. However, the estimator D̂ for D0 is not based on a thresholded
version of Ĝ. One possibility to address this issue is to introduce a shrinkage on Ĝ in (1.5) by using
a thresholded version of Ĝ.

On the other hand, computationally, it is faster to minimize p univariate functions as opposed
to optimizing a matrix function over a certain set of diagonal matrices. In a simulation study in
Appendix F.3, we show that the difference between the multivariate and univariate estimates is
negligible.

Remark 2.3. Assumption 1 with (2.5) coincides with the basic model (1.1) and supposes addi-
tionally that the true memory parameters D0 are contained in the interval of admissible estimates.
Besides assuming that the matrix G0 is positive definite, we suppose in (2.6) that the eigenvalues of
G0 are bounded from below. This is a typical assumption in sparse covariance estimation; see Roth-
man et al. (2008). Assumption 2 is a smoothness condition and controls the second order terms of
the spectral density matrix. Usually, the componentwise relation fX(λ) = λ−D0G0λ

−D0(1+O(λ2q)),
as λ → 0+, is imposed to derive asymptotic results in the context of spectral density estimation.
However, we require a slightly stronger assumption (2.7) in order to control the bias terms to derive
non-asymptotic results.

Remark 2.4. Assumption 3 is required to ensure that the bias term is asymptotically negligible.
This kind of assumption appears in the asymptotic literature regarding local Whittle estimation as
well; see Assumption A.2 in Robinson (1995b) and Assumption A.1 in Robinson (2008). However,
those assumptions typically only require differentiability in an epsilon region around the origin. We
need to impose differentiability in a region which includes all frequencies used in estimation and
allows for all choices of m = 1, . . . , N2 .

Remark 2.5. Our main assumptions on the underlying process are the parametrization of the
spectral density in terms of the matrices (D0, G0) as formalized in Assumption 1, and Assumption
4 which ensures that the series is either Gaussian or follows a linear representation. Though, we
require the innovations of the linear representation to be sub-Gaussian, our results can be used to
derive statements for sub-exponential innovations or assuming finite fourth moments; see Remark
E.1 for a more detailed discussion. Our assumptions allow for quite general long- and short-range
dependent linear time series. For long-range dependence, examples are multivariate FARIMA series
as defined in Kechagias and Pipiras (2015a). For short-range dependence, examples are multivariate
ARMA models.

Remark 2.6. Assumption 5 is satisfied, in particular, when ∆1 = 0, that is, when the underlying
time series exhibits only short- or long-range dependence. In other words, the assumption is only
needed when the true memory parameters d0,r, r = 1, . . . , p, are known to take also values in
(−1

2 , 0). The case d0,r < 0 contributes to the non-asymptotic bounds in our main results in form

of two terms mN2∆1 and m
(∑m

j=1 λ
4∆1
j

)−1
. Assumption 5 is necessary to ensure that our non-

asymptotic bounds prove consistency, which is the case as long as both quantities go to infinity
while the sample size increases. Assumption 5 not only controls mN2∆1 but is also sufficient to
control the second quantity, since

m∑

j=1

λ4∆1
j ≤ cN−4∆1

m∑

j=1

j4∆1 ≤ cN−4∆1

{
1

4∆1+1m
4∆1+1, if ∆1 ∈ (−1

4 , 0),

log(m) + 1, if ∆1 ≤ −1
4 .
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3 Main results

In this section, we present our main results. Section 3.1 provides a roadmap for our proofs which
reveals what kind of results are necessary to prove consistency for both the thresholding and
graphical local Whittle estimation. This includes in particular a consistency result on the maximum
norm of Ĝ(D̂) − G0. Subsequently, we formally state our main results in Section 3.2, that is,
consistency results for the thresholding and graphical local Whittle estimators. Section 3.3 discusses
alternative estimators for precision matrix estimation and their convergence rates. We provide
results on consistent model selection in Section 3.4. In Section 3.5, we discuss how our results
compare to existing results in the literature.

3.1 Proof idea

In contrast to the spectral density estimation under short-range dependence, allowing for long-range
dependence and antipersistence requires estimation of two different kinds of model parameters, the
matrix G0 and the memory parameters d0,r, r = 1, . . . , p. For this reason, deriving a concentra-
tion inequality becomes particularly challenging. Results for the graphical and thresholding local
Whittle estimators require a concentration inequality on the event

{‖Ĝ(D̂)−G0‖max > δ}. (3.1)

For this, our theoretical analysis reveals that the memory parameters d0,r, r = 1, . . . , p, have to be
controlled simultaneously, and we propose to derive a concentration inequality on the event (3.1)
by incorporating the event {‖D̂ − D0‖max ≤ ε}, and then use multiple bounds of the probability
of the event of interest (3.1) in terms of events which are representable as quadratic forms of i.i.d.
sub-Gaussian random vectors. A key tool in our analysis is a uniform concentration inequality
introduced by Dicker and Erdogdu (2017). For completeness, we present a slightly modified version
of their result in Appendix D.1.

Before we present the main results, we introduce some further notation. We write the population
analogue of Ĝ(D) in (1.6) as

G̃(D) =
1

m

m∑

j=1

λD−D0
j G0λ

D−D0
j (3.2)

and the respective univariate counterpart as g̃r(dr) = G̃rr(D). Furthermore, we write

L(d) =

∫ 1

0
x2ddx =

1

2d+ 1
for d > −1/2. (3.3)

We now present the aforementioned inequalities on the probability of the event (3.1), which give
insights into what kind of concentration inequalities are required to prove the desired consistency
result on ‖Ĝ(D̂)−G0‖max. A detailed analysis can be found in the proof of Proposition 3.5 below.
For some δ, ε > 0,

P(‖Ĝ(D̂)−G0‖max > δ)

= P
(
{‖Ĝ(D̂)−G0‖max > δ} ∩

(
{‖D̂ −D0‖max ≤ ε} ∪ {‖D̂ −D0‖max > ε}

))

≤ P({‖Ĝ(D̂)− G̃(D̂)‖max > δ/2} ∩ {‖D̂ −D0‖max ≤ ε})

+ P
((
{‖G̃(D̂)−G0‖max > δ/2} ∩ {‖D̂ −D0‖max ≤ ε}

)
∪ {‖D̂ −D0‖max > ε}

)
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≤ P({‖Ĝ(D̂)− G̃(D̂)‖max > δ/2} ∩ {‖D̂ −D0‖max ≤ ε}) + P(‖D̂ −D0‖max > η) (3.4)

≤
p∑

r,s=1

P( sup
D∈Ω(ε)

|Ĝrs(D)− G̃rs(D)| > δ/2) + P(‖D̂ −D0‖max > η) (3.5)

with
Ω(ε) = {D ∈Mdiag|∆1Ip 4 D 4 ∆2Ip and ‖D −D0‖max ≤ ε}

and η = min{ε, δ4(‖G0‖ log(N)λ−2ε
m L(−ε))−1}. The relation (3.4) will follow from Lemma C.6. This

way, the problem reduces to finding a uniform concentration inequality on |Ĝrs(D)− G̃rs(D)| and
a concentration inequality on ‖D̂ − D0‖max. Instead of considering the maximum, we bound the
probability of {‖D̂ −D0‖max > η} componentwise for each r = 1, . . . , p as

P(|d̂r − d0,r| > η) ≤ P(|ĝr(d0,r)− g̃r(d0,r)| > η1)

+ P( sup
d∈Θ1

| 1
m

m∑

j=1

( j
m

)2d−2d0,r
(λ

2d0,r
j IX,rr(λj)− g0,r)| > η2)

+ P(| 1
m

m∑

j=1

(lj − 1)(λ
2d0,r
j IX,rr(λj)− g0,r)|1{d0,r≥∆1+ 1

2
} > η3)

(3.6)

with Θ1 as in (3.22); see Remark 3.4. Furthermore, with ` = exp( 1
m

∑m
j=1 log(j)) and ∆ as in

Remark 3.4,

lj =





(
j
`

)2(− 1
2

+∆)
, 1 ≤ j ≤ `,

(
j
`

)2(∆1−d0,r)
, ` < j ≤ m.

(3.7)

For the sake of simplicity, η1, η2, η3 > 0 in (3.6) and the arguments for (3.6) are not further specified;
we refer to the proof of Proposition 3.5 for more details. The inequalities (3.5) and (3.6) reveal
that it is enough to prove a uniform concentration inequality for an object of the form

sup
D∈Ω
|Ĥrs(D)− H̃rs(D)| (3.8)

with Ĥrs(D), H̃rs(D) denoting the (r, s)th elements of

Ĥ(D) =
1

m

m∑

j=1

tj(D)IX(λj)tj(D) and H̃(D) =
1

m

m∑

j=1

tj(D)λ−D0
j G0λ

−D0
j tj(D), (3.9)

where tj(D) = diag(tj,1(d1), . . . , tj,p(dp)) ∈ Mdiag consist of suitable functions of d’s. The set Ω is
of the form

Ω = {D ∈Mdiag | A 4 D 4 B} (3.10)

with
A = diag(a1, . . . , ap), B = diag(b1, . . . , bp). (3.11)

The functions tj,r : [∆1,∆2] → [0,∞) are assumed to be differentiable on (∆1,∆2) with bounded
derivatives.

From here on, (3.8) can be separated into a probabilistic and a deterministic part as

sup
D∈Ω
|Ĥrs(D)− H̃rs(D)| ≤ sup

D∈Ω
|Ĥrs(D)− EĤrs(D)|+ sup

D∈Ω
|EĤrs(D)− H̃rs(D)|. (3.12)

10



We treat both terms separately. For the first summand, we need a high probability upper bound
stated in Lemma B.1. On the other hand, the second term in (3.12) is deterministic and an upper
bound is given in Lemma B.2. Lemmas B.1 and B.2 are stated in Appendix B. Both are crucial to
infer upper bounds on the probabilities in (3.5) and (3.6). Those results are stated in Propositions
3.1–3.4 below and its proofs can be found in Appendix B.

Technical contributions: The following points highlight our main technical contributions and
give some orientation of how the different appendices contribute.

The statement for a probabilistic bound on the first summand of (3.12) is stated in Lemma
B.1 in Appendix B. The key tool to handle the first summand of (3.12) is a uniform concentration
bound of Dicker and Erdogdu (2017), slightly reformulated to serve better our needs in Appendix
D.1. Our arguments above show how the incorporation of the event {‖D̂ − D0‖max ≤ ε} allows
one to get to the setting where that bound could potentially be applicable. Making the bound
workable for the probabilities in (3.5) and (3.6) was another major challenge and can be found
in Appendix C.1. The difficulties involved allowing for general dependence structure (short- and
long-range dependence, and antipersistence) and, more importantly, developing non-asymptotic
theory in terms of any dimension p and sample size N . Though there are certainly many works
on local Whittle estimation (and we adapt some of their techniques), non-asymptotic results are
not available even for the one-dimensional case p = 1. Key to our non-asymptotic developments
are bounds of independent interest on various autocovariance matrices under general dependence
assumptions in Appendix C.3. Those results are derived by replacing the matrices by integral
operators. We believe that those inequalities are crucial in order to derive non-asymptotic theory
in any context involving high-dimensional long-range dependence.

To deal with the bounds on the second summand of (3.12) and deterministic part of the quan-
tities in (3.5) and (3.6), we state Lemma B.2. The proof involves the derivation of a series of
non-asymptotic bounds for the periodogram in Appendix C.2.

3.2 Statements

In this section we formally state our main results. In order to keep the statements as simple as
possible, we moved the expressions of some quantities to Appendix A.

We further introduce the following quantity which will allow us to express our bounds in a
simplified way and emphasize the necessary distinction between different ranges of the memory
parameters as will become clearer in the proofs

s∆N = max
r=1,...,p

(1{d0,r≤0} + log(N)1{d0,r>0}). (3.13)

Proposition 3.1. Let {Xn}n∈Z be a p-dimensional, stationary, centered time series with spectral
density fX and suppose Assumptions 1–5 are satisfied. Then, for any ε ∈ (0,min{∆2,−∆1, q})
with q as in Assumption 2, there are positive constants c1, c2 such that for any C ≥ 1,

P
(

sup
D∈Ω(ε)

|Ĝrs(D)− G̃rs(D)| > ν
)
≤ c1p

−c2C

for

ν = C|||G|||
√

log(p)

R1
+ T1(ε), (3.14)

where R1 = min{(log(N) s∆N )−1R11, (log(N) s∆N )−2R12} with s∆N as in (3.13) and R1i, i = 1, 2
are characterized in Table A.1. A representation of T1(ε) can be found in Table A.2.
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The parameter ε controls the deviation of the estimated memory parameters D̂ around D0,
and will be chosen appropriately in Proposition 3.5 below. To ensure that the deviation of Ĝrs(D)
around G̃rs(D) can be controlled, the quantities which characterize ν in (3.14) have to satisfy
R1 % |||G|||2 log(p) and mN−2ε %

(
1 + 1

2ε

)
Qm with Qm defined in (A.3) in Appendix A. The

quantities in ν can be expected to satisfy those assumptions since our bounds are sharp enough
to get R1 → ∞ and T1(ε) → 0 as N → ∞. Those asymptotics are crucial in order to achieve
consistency which entails a negligible bias. This observation can be made not only for Proposition
3.1 but as well in the similarly structured Propositions 3.2–3.4 below.

Remark 3.1. Proposition 3.1 and subsequent results provide non-asymptotic bounds when es-
timating quantities of interest. In the considered setting, {Xn}n∈Z is a stationary series with a
spectral density fX(λ) and observed for n = 1, . . . , N , and of fixed dimension p. But note that our
non-asymptotic bounds are expressed in terms of p,N, |||G||| and other quantities. When p changes,
the dependence structure of {Xn}n∈Z also changes and our bounds adjust through changing |||G|||
and those other quantities (e.g. cG,1, cG,2 in Assumptions 2 and 3). The same with changing N .
We note that because of the term log(p)/R1, in (3.14), the obtained bounds suggest consistent
estimation in a typical high-dimensional regime where p is much larger than N , but log(p) is much
smaller than N (or the power of N). We also note that because of the constants cG,1, cG,2 in
Proposition 3.1 and similar subsequent results are absolute in the sense that they do not depend
on p,N and the underlying stationary series; the dependence on the latter is captured through the
other quantities in the bounds.

The following three propositions give upper bounds on the probabilities in (3.6). Those are the
probabilities required to control the estimates for the memory parameters D0.

Proposition 3.2. Let {Xn}n∈Z be a p-dimensional, stationary, centered time series with spectral
density fX and suppose Assumptions 1–5 are satisfied. Then, there are positive constants c1, c2

such that for any C ≥ 1,

P
(
|ĝr(d0,r)− g0,r| > ν1

)
≤ c1p

−c2C

for

ν1 = C|||G|||
√

log(p)

R2
+ T2, (3.15)

where R2 = min{s∆−1
N R21, s∆−2

N R22} with s∆N as in (3.13) and R2i, i = 1, 2 are characterized in
Table A.1. A representation of T2 can be found in Table A.2.

In order to ensure meaningful estimation, the quantities which characterize ν1 in (3.15) have to
satisfy R2 % |||G|||2 log(p) and m % log(m)Qm with Qm defined in (A.3) in Appendix A.

For the following proposition, we use the set Θ1 in (3.22), which is characterized by some ∆ > 0.

Proposition 3.3. Let {Xn}n∈Z be a p-dimensional, stationary, centered time series with spectral
density fX and suppose Assumptions 1–5 are satisfied. Then, there are positive constants c1, c2

such that for any C ≥ 1,

P
(

sup
d∈Θ1

| 1
m

m∑

j=1

( j
m

)2d−2d0,r
λ

2d0,r
j (IX,rr(λj)− λ−2d0,r

j g0,r)| > ν2

)
≤ c1p

−c2C

for

ν2 = C|||G|||
√

log(p)

R3
+ T3, (3.16)
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where R3 = min{(log(m) s∆N )−1R31, (log(m) s∆N )−2R32} with s∆N as in (3.13) and R3i, i = 1, 2
are characterized in Table A.1. A representation of T3 can be found in Table A.2.

In order to ensure meaningful estimation, the quantities which characterize ν2 in (3.16) have to

satisfy R3 % |||G|||2 log(p) and m2∆̃r % Qm with Qm defined in (A.3) in Appendix A.
The next proposition gives a bound on the third probability in (3.6). Recall the definitions of

` and lj given in (3.7).

Proposition 3.4. Let {Xn}n∈Z be a p-dimensional, stationary, centered time series with spectral
density fX and suppose Assumptions 1–5 are satisfied. Then, there are positive constants c1, c2

such that for any C ≥ 1,

P
(
| 1
m

m∑

j=1

(lj − 1)λ
2d0,r
j (IX,rr(λj)− λ−2d0,r

j g0,r)|1{d0,r≥∆1+ 1
2
} > ν3

)
≤ c1p

−c2C

for

ν3 = C|||G|||
√

log(p)

R4
+ T4, (3.17)

where R4 = min{s∆−1
N R41, s∆−2

N R42} with s∆N as in (3.13) and R4i, i = 1, 2 are characterized in
Table A.1. A representation of T4 can be found in Table A.2.

In order to ensure meaningful estimation, the quantities which characterize ν3 in (3.17) have
to satisfy R4 % |||G|||2 log(p), m % `1−2∆Qm and m % log(m)Qm with Qm defined in (A.3) in
Appendix A.

Propositions 3.1–3.4 combined together enable us to obtain a consistency result for (3.1), which
is stated in the following proposition. Recall the definition of k given in (2.6) and of the function
L in (3.3).

Proposition 3.5. Suppose that the assumptions in Propositions 3.1–3.4 hold. Then, there are
positive constants c1, c2 such that for any C ≥ 1,

P(‖Ĝ(D̂)−G0‖max > δ) ≤ c1p
2−c2C (3.18)

for
δ = max{2ν, ε4‖G0‖ log(N)λ−2ε

m L(−ε)}, ε = max
i=1,2,3

ηi, (3.19)

with ν as in (3.14),

η2
1 = 8(V1(m)k)−1ν1, η

2
2 = 8(V1(m)L(∆2 −∆1)k)−1ν2, η

2
3 = (V2(m)k)−1ν3, (3.20)

where νi, i = 1, 2, 3 are as in (3.15), (3.16) and (3.17) and

V1(m) =
1

3

1

m4

m∑

i,j=1

(i− j)2, V2(m) =
1

m

m∑

j=1

(lj − 1), (3.21)

and it is assumed that ε ∈ (0, 1
2).

In order to ensure meaningful estimation, the term V2(m) needs to be positive. This is proven
in Lemma C.7.
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Remark 3.2. In Corollary A.1, we formally state an analogous result to Proposition 3.5 under
the assumption that the underlying process is either short- or long-range dependent. Note that in
contrast to Proposition 3.5, Corollary A.1 does not require Assumption 5. In particular, one can
infer an asymptotic result without requiring any further assumptions on the relation between m
and N besides 1

m + m
N →∞ for N →∞ which coincides with Assumption 4 in Robinson (1995b).

A numeric illustration of our non-asymptotic results is given in Appendix F.2 in terms of Corollary
A.1.

The following propositions give non-asymptotic consistency results for the graphical and thresh-
olding local Whittle estimators, respectively.

Proposition 3.6. Let {Xn}n∈Z be a p-dimensional, stationary, centered time series with spectral
density fX and suppose Assumptions 1–5 are satisfied. Then, there are positive constants c1, c2,
such that choosing a threshold ρ = δ as in (3.19) yields, for any C ≥ 1,

P(‖Tρ(Ĝ(D̂))−G0‖2F > 13p‖G0‖aaρ2−a) ≤ c1p
2−c2C ,

P(‖Tρ(Ĝ(D̂))−G0‖ > 7‖G0‖aaρ1−a) ≤ c1p
2−c2C

for any a ∈ [0, 1) and Tρ as in (2.2).

Proposition 3.7. Let {Xn}n∈Z be a p-dimensional, stationary, centered time series with spectral
density fX and suppose Assumptions 1–5 are satisfied. Then, there are positive constants c1, c2,
such that choosing a penalty parameter ρ = δ as in (3.19) yields, for any C ≥ 1,

P(‖P̂ρ(D̂)− P0‖2F >
162

k4 (p+ s)ρ2) ≤ c1p
2−c2C

with s as in (2.10) and 16
k2
√
p+ sρ ≤ ‖P0‖.

Propositions 3.6 and 3.7 can be expressed in terms of the quantities in Corollary A.1 when
allowing only for long- and short-range dependence. That is, δ in Propositions 3.6 and 3.7 can be
chosen as in Corollary A.1 defined in terms of (A.4).

In contrast to Proposition 3.6, Proposition 3.7 states only a result for the Frobenius norm.
A result on the operator norm can be inferred based on the inequality ‖ · ‖ ≤ ‖ · ‖F . However,
the operator norm provides the same convergence rate as the Frobenius norm. In contrast, for
thresholding estimators, the convergence rates differ by one p; see Proposition 3.6. The literature
on covariance estimation has addressed this problem by considering alternative estimators. Section
3.3 below presents a modified graphical local Whittle estimator based on estimating the coherence
matrix and a constrained l1-minimization for inverse matrix estimation (CLIME) version.

Remark 3.3. The probability bounds in Propositions 3.1–3.7 are given in terms of p which might
suggest consistency only in the limit of p→∞, as long as C is large enough. Note, however, that
C = Cm may depend on m and N , and enters in our choices of ν in (3.14) and νi, i = 1, 2, 3, in
(3.15), (3.16) and (3.17). Under suitable assumptions, one can in fact have

Cm

√
log(p)

Ri
→ 0 and Cm →∞ as m→∞ for i = 1, . . . , 4,

in Propositions 3.1–3.4, so that the resulting probability bounds are small even for fixed low-
dimensional p. In the latter case, even when p = 1, these results also provide new non-asymptotic
exponential bounds, for example, on the probability of {‖Ĝ(D̂)−G0‖max > δ}.
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Remark 3.4. The work by Robinson (1995b) concerns consistency results for the univariate local
Whittle estimators forG0 andD0. The consistency of D̂ is stated in Theorem 1 in Robinson (1995b).
The proof in the asymptotic regime mentions that the function R(D) behaves nonuniformly around
D = d0− 1

2 . For this reason, one has to consider the cases d0− 1
2 < ∆1 and d0− 1

2 ≥ ∆1 to separate
the set Θ as Θ = Θ1 ∪Θ2 with

Θ1 =

{
{d | d0 − 1

2 + ∆ ≤ d ≤ ∆2}, if d0 ≥ ∆1 + 1
2 ,

{d | ∆1 ≤ d ≤ ∆2}, if d0 < ∆1 + 1
2 ,

(3.22)

Θ2 =

{
{d | ∆1 ≤ d < d0 − 1

2 + ∆}, if d0 ≥ ∆1 + 1
2 ,

∅, if d0 < ∆1 + 1
2 ,

(3.23)

where ∆ ∈ (0,∆2). As displayed in (3.22), separating Θ is only necessary if d0 < ∆1 + 1
2 . The

case d0 < ∆1 + 1
2 includes d0 ≤ 0 since −1

2 < ∆1. Note that d0 ≤ 0 coincides with the prior
knowledge that the observed time series is not long-range dependent. The sets Θ1 and Θ2 are used
to determine the range of admissible estimates d for an individual component series Xr,n. Then,
Θ1 and Θ2 depend on d0,r instead of d0. Throughout the paper we do not reflect the dependence
on r in the notation of Θ1 and Θ2.

3.3 Alternative estimators for precision matrix

We study here a modified graphical local Whittle estimator based on estimating the coherence
matrix and a CLIME version; see Sections 3.3.1 and 3.3.2. The section and in particular the
corresponding proofs in Appendix B also emphasize the value of our Proposition 3.5 since it can be
used to infer consistency results even for modified versions of penalized local Whittle estimators.

3.3.1 Modified graphical local Whittle

As known for covariance matrices, the rate of convergence can be improved for the operator norm by
considering the correlation matrix instead; see Rothman et al. (2008) and Shu and Nan (2019) for
temporally correlated data. Analogously, we can consider the coherence matrix. Let G0 = W0Γ0W0,

where W0 = diag(G
1/2
0,11, . . . , G

1/2
0,pp) and Γ0 is the true coherence matrix. Then, the precision matrix

satisfies P0 = W−1
0 Γ−1

0 W−1
0 and therefore K0 := Γ−1

0 = W0P0W0. We write Γ̂ = Γ̂(D̂) and

Ŵ = Ŵ (D̂) for their sample counterparts, and indicate their dependence on the matrix D. The
matrix K0 can then be estimated as

K̂ρ = argmin
K�0

`Γρ (D̂,K), (3.24)

where D̂ is estimated univariately by (2.1) and

`Γρ (D,K) = − 1

m

m∑

j=1

log |λDj KλDj |+ tr(Γ̂(D)K) + ρ‖K‖1,off . (3.25)

Then, we can define a modified coherence-based graphical local Whittle estimator

P̂Mρ = Ŵ−1K̂ρŴ
−1, (3.26)

where Ŵ (D̂) = diag(Ĝ
1/2
11 (D̂), . . . , Ĝ

1/2
pp (D̂)). The following statement gives a non-asymptotic con-

sistency result on the spectral norm.
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Proposition 3.8. Let {Xn}n∈Z be a p-dimensional, stationary, centered time series with spectral
density fX and suppose Assumptions 1–5 are satisfied. Then, there are positive constants c1, c2,
such that choosing a penalty parameter ρ = δ as in (3.19) yields, for any C ≥ 1,

P(‖P̂Mρ (D̂)− P0‖ > 30× 48 max{1, 1/k9}max{1, ‖K0‖}
√

s ρ) ≤ c1p
2−c2C

with s as in (2.10) and 48 max{1, 1/k4}√sρ ≤ ‖K0‖.

In contrast to Proposition 3.7, Proposition 3.8 provides a convergence rate for the spectral
norm which shows that the modified graphical local Whittle estimator (3.26) can achieve the same
convergence rate as the thresholding local Whittle estimator.

A handy result to prove Proposition 3.8 and of independent interest is the following lemma
which gives a consistency result for the coherence matrix estimator in (3.24).

Lemma 3.1. Let {Xn}n∈Z be a p-dimensional, stationary, centered time series with spectral density
fX and suppose Assumptions 1–5 are satisfied. Then, there are positive constants c1, c2, such that
choosing a penalty parameter ρ = δ as in (3.19) with N, p such that δ < 1 yields, for any C ≥ 1,

P(‖K̂ρ(D̂)−K0‖2F > (48 max{1, 1/k4})2 s ρ2) ≤ c1p
2−c2C

with s as in (2.10) and 48 max{1, 1/k4}√sρ ≤ ‖K0‖.

Note that we assume N, p such that δ < 1 only to achieve a simplified representation of the
result. In general, it is possible to state the result for any fixed N, p.

3.3.2 CLIME estimation

CLIME estimation for i.i.d. samples was introduced in Cai et al. (2011) and further studied in Shu
and Nan (2019) allowing for temporal correlation. We adopt their approach to the spectral domain
and set Θ̂ = (θ̂rs)r,s=1,...,p to be the solution of the minimization problem

min ‖Θ‖1 subject to ‖Ĝ(D̂)Θ− Ip‖max ≤ ρ,

where ρ is a tuning parameter. Then, the CLIME estimator is defined as

P̂Cρ = (θ̂Crs)r,s=1,...,p with θ̂Crs = θ̂Csr = θ̂rs1{|θ̂rs|≤|θ̂sr|} + θ̂sr1{|θ̂rs|>|θ̂sr|}. (3.27)

We impose the sparsity assumption (2.9) on P0.

Proposition 3.9. Let {Xn}n=1,...,N be a p-dimensional, stationary, centered time series with spec-
tral density fX and suppose Assumptions 1–5 are satisfied. Then, there are positive constants c1, c2,
such that choosing a penalty parameter ρ = δ as in (3.19) yields, for any C ≥ 1,

P(‖P̂Cρ (D̂)− P0‖2 > 24‖P0‖1−a1 ‖P0‖aaρ1−a) ≤ c1p
2−c2C

for any a ∈ [0, 1).
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3.4 Graphical model selection consistency

We give here results on consistent recovery of the sparsity pattern and sign consistency for our
estimators. For the long-run variance matrix estimation, we focus on the thresholding local Whittle
estimator. For the precision matrix, we consider a thresholded CLIME estimator and conclude with
a discussion on consistent graph recovery for other estimators. The proofs of the statements in this
section can be found in Appendix B.

The following proposition gives a non-asymptotic result for consistent graph recovery of the
thresholding local Whittle. Rothman et al. (2009) consider covariance matrix estimation for i.i.d.
p-dimensional random vectors in a high-dimensional regime. In particular, their Theorem 2 states
that the thresholding operator consistently recovers the sparsity pattern. The proof of Theorem
2 in Rothman et al. (2009) is generic and proves, combined with our Proposition 3.5, consistent
recovery of the sign and sparsity pattern.

Proposition 3.10. Let {Xn}n=1,...,N be a p-dimensional, stationary, centered time series with
spectral density fX and suppose Assumptions 1–5 are satisfied. Then, there are positive constants
c1, c2, such that choosing a threshold ρ = δ as in (3.19) yields, for any C ≥ 1,

P
(
Tρ(Ĝrs(D̂)) = 0 for all r, s such that G0,rs = 0

)
≥ 1− c1p

2−c2C . (3.28)

If we additionally assume that all non-zero elements of G0 satisfy |G0,rs| > τ , where τ is of the
same order as ρ, we have

P
(

sign(Tρ(Ĝrs(D̂))G0,rs) = 1 for all r, s such that G0,rs 6= 0
)
≥ 1− c1p

2−c2C . (3.29)

The CLIME estimator in (3.27) can be modified to recover the support of the precision matrix.
More precisely, we conduct an additional thresholding step by applying (2.2) to P̂Cρ (D̂) in (3.27).
This procedure follows Section 4 in Cai et al. (2011) who considered inverse covariance estimation
for i.i.d. data. Subsequently, Shu and Nan (2019) used a thresholded CLIME for inverse covariance
estimation under temporal dependence; see Theorem 5 in Shu and Nan (2019) for their result
on consistent sparsity and sign recovery. Following their arguments, we can state the following
proposition.

Proposition 3.11. Let {Xn}n∈Z be a p-dimensional, stationary, centered time series with spectral
density fX and suppose Assumptions 1–5 are satisfied. Then, there are positive constants c1, c2,
such that choosing a penalty parameter ρ = δ as in (3.19) yields, for any C ≥ 1,

P
(
Tτ (P̂Cρ (D̂)) = 0 for all r, s such that P0,rs = 0

)
≥ 1− c1p

2−c2C . (3.30)

If we additionally assume that all non-zero elements of G0 satisfy |G0,rs| > τ , where τ is of the
same order as ρ, we have

P
(

sign(Tτ (θ̂Crs)P0,rs) = 1 for all r, s such that P0,rs 6= 0
)
≥ 1− c1p

2−c2C . (3.31)

For the graphical local Whittle estimation, consistent recovery of the sparsity pattern is not
expected. This is discussed in Zou (2006) for the classical LASSO in a regression context. There
have been several approaches to modify the classical LASSO to achieve consistent graph recovery.
For instance the consideration of an adaptive version (Zou, 2006) and a thresholded LASSO (Zhou,
2010; Ravikumar, Wainwright, Raskutti, and Yu, 2011; Wang and Allen, 2021).
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An adaptive version is based on a weighted penalty, where the weights are data driven using a
preliminary estimator. Though our results are expected to be helpful to prove consistency for an
adaptive version, a detailed investigation goes beyond the scope of this work. A related discussion
on the difficulties of proving consistent recovery of the sparsity pattern with help of an extended
Bayesian information criterion can be found in Remark 4.1.

A thresholding graphical local Whittle estimator is expected to consistently recover the sparsity
pattern. It is similar in flavor to the thresholded CLIME and a consistency result can be inferred
with help of Proposition 3.5.

3.5 Comparison to existing results

In this section, we compare our results to related work. Existing results are either for short-range
dependent time series or, if they allow for stronger temporal and spatial dependence, the dependence
measure is characterized by an unknown and unestimated quantity. In particular, results for data
with stronger dependence structure have only been derived in the time domain.

Sun et al. (2018): We recover recently proven results on spectral density estimation at frequency
zero for short-range dependent time series. Sun et al. (2018) supposed that D0 ≡ 0 and could prove
results in a log(p)/m → 0 regime. We get the same result by setting ∆1 = ∆2 = ε = 0 in (3.19).
Strictly speaking, we do not allow for ε = 0 since T1(ε) in Table A.2 involves (1 + 1

2ε). However,
a look into the proof of Proposition 3.1 reveals that for ε = 0, one can bound the respective term
by log(m) instead. We refrained from incorporating the case ε = 0 explicitly for simplicity. We
note also that our result includes an additional log(N). However, this is an artifact of using a
slightly simplified notation to make reading easier. More precisely, to prove Proposition 3.5, we
apply a uniform concentration inequality in Lemma B.1 which involves the supremum of a partial
derivative; see (B.2). The supremum is taken over a closed set. In particular, the set is not empty.
For this reason, even when the set contains only one point as in the short-range dependent case
(D0 ≡ 0), the derivative is included in the respective bounds. The logarithm appears because of
the derivative in our uniform concentration inequality. This can be easily avoided by considering
the supremum over a half-open interval. However, it would require careful distinction through all
our proofs between whether the set is empty or not. In order to avoid over complicated notation,
we refrained from incorporating this case.

Shu and Nan (2019): This related work focusses on the estimation of the covariance matrix
and its inverse, with the results in the time domain. However, Shu and Nan (2019) also allow for

long-range dependence. They assume that the correlation ρikn =
σikn

σikkσ
i
nn

with σikn = EXi,kXi,n in

the component series Xi,n satisfies

max
i=1,...,p

|ρikn| ≤ C|k − n|2α−1 for k 6= n. (3.32)

For α ∈ (0, 1
2) the individual time series can thus be long-range dependent in the sense that the

correlation sequences are not absolutely summable. To make a fair comparison, we will assume a
known memory parameters D0 and, for simplicity, further ignore the bounds on the deterministic
part and only consider the case when the time series is short- or long-range dependent. Then, based
on Proposition 3.1 for ε = 0 and ∆1 = 0, our convergence rate simply reduces to

ν = C|||G|||
√

log(p)

R1
, R1 = min{(log(N) s∆N )−1R11, (log(N) s∆N )−2R12} (3.33)
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with s∆N as in (3.13) and

R11 = m1−2∆2 , R12 = min
{
m2−4 s∆u ,m

3
2
−2 s∆u

}
.

In Shu and Nan (2019), the result analogous to our Proposition 3.1 is Lemma A.2., (i) with rates
given in Remark 2. Based on Remark 2 in Shu and Nan (2019), the quantity analogous to R1 in
(3.33) is given by

R =





N1−2α, α ∈ (1
4 ,

1
2),

min
{
N1−2α, N

1
2

}
, α ∈ (0, 1

4),

min
{

(log(N))−1N,N
1
2

}
, α = 1

4 .

(3.34)

Since the results are in the time domain, the convergence rates are in terms of the sample size N
rather than the number of frequencies used in estimation m as in our results and Sun et al. (2018).
See also Remark C.1, for a discussion on why our bounds include log(N). Otherwise, our bounds
coincide with those in Shu and Nan (2019) for ∆2 = α. In contrast to our statements, the results
in Shu and Nan (2019) are not non-asymptotic. Furthermore, they do not estimate α.

4 The choice of the shrinkage parameters and algorithms

Both thresholding (2.2) and graphical local Whittle estimation (2.3) depend respectively on the
threshold and penalization parameter ρ. In this section, we discuss how to select ρ. This choice
plays a critical role in finite sample performance. We propose to use cross-validation for the
thresholding parameter and an extended Bayesian information criterion (eBIC) for graphical local
Whittle estimation.

4.1 Thresholding local Whittle estimation

Cross-validation is generally suggested to select the penalization parameter for thresholding covari-
ance matrix estimation; see Bickel and Levina (2008b). Sun et al. (2018) modified it to sampling
over Fourier frequencies in order to account for temporal dependence in spectral density matrix
estimation. Similarly, we propose to select the optimal thresholding parameter ρ by cross-validating
over the periodogram (1.4). More precisely, we split the sequence of the periodogram evaluated at
different frequencies into two groups. Then, we apply the thresholding estimator of the long-run
variance matrix (2.2) to the first group. The long-run variance matrix estimator from the latter
group is used as a reference. The optimal thresholding parameter is selected by minimizing the av-
erage Frobenius norm (squared) between the thresholding estimators and the reference estimators
of the long-run variance matrix. The detailed procedure can be found in Algorithm 1. As in Sun
et al. (2018), this procedure remains to be justified in theory even for short-range dependent series.

4.2 Graphical local Whittle estimation

For the penalization parameter in graphical local Whittle estimation, we suggest to use an extended
Bayesian information criterion (eBIC). Tuning parameter selection for penalized likelihood estima-
tion by an eBIC has been studied by multiple authors allowing the dimension to grow with the
sample size. The eBIC was proposed by Foygel and Drton (2010) for Gaussian graphical models
and further used in Foygel and Drton (2011) for model selection in sparse generalized linear models.
Later, Gao, Pu, Wu, and Xu (2012) proved that using the eBIC to select the tuning parameter in
penalized likelihood estimation with the so-called SCAD penalty (Fan and Li (2001)) can lead to
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Algorithm 1: Threshold selection by cross-validation over periodogram

Input: IX(λj), j = 1, . . . ,m, D̂. Range L of ρ. Number N1 of validation sets.

Output: Optimal threshold parameter ρ̂ := argmin
ρ∈L

R̂ρ.

for ρ ∈ L do
for k = 1, . . . , N1 do

1. Randomly divide {1, . . . ,m} into two sets J1 and J2 of sizes m1 = [m/2] and
m2 = m− [m/2], respectively.

2. Calculate Ĝ1,k = m−1
1

∑
j∈J1 λ

D̂
j IX(λj)λ

D̂
j and Ĝ2,k = m−1

2

∑
j∈J2 λ

D̂
j IX(λj)λ

D̂
j .

end

Obtain R̂ρ = N1
−1∑N1

k=1 ‖Tρ(Ĝ1,k(D̂))− Ĝ2,k(D̂)‖2F .

end

consistent graphical model selection. See also Chen and Chen (2012). To be more specific, we use
the following criterion

P̂eBIC = argmin
P∈G

eBICγ(P ), eBICγ(P ) = tr(Ĝ(D̂)P )− log |P |+ ‖P‖0
1

N
(logN + 4γ log p), (4.1)

where G is the set of all P̂ρ estimated by (2.3) over a range of ρ and ‖P‖0 denotes the norm counting
the number of non-zero elements in P . Furthermore, the criterion is indexed by a parameter
γ ∈ [0, 1]; see Foygel and Drton (2010) and Chen and Chen (2008) for the Bayesian interpretation
of γ. Then, P̂eBIC gives us a data-driven estimate of P̂ρ and the associated penalty ρ.

In order to determine P̂ρ over a range of ρ and the set G, we consider an algorithm to compute
the graphical local Whittle estimator for a given penalty parameter ρ. This algorithm is a natural
extension of graphical LASSO algorithms for real symmetric covariance matrices to complex-valued
Hermitian matrices. The generalization to complex-valued Hermitian matrices is necessary since
the true precision matrix P0 is possibly complex-valued. We propose a complex-valued alternating
linearization method (ALM) which is a variation of alternating direction method of multipliers
(ADMM) proposed in Scheinberg, Ma, and Goldfarb (2010). Our limited simulation study shows
that the proposed method converges faster than the näıve ADMM algorithm. We also note that
the complex-valued ADMM for SRD series was considered by Jung, Hannak, and Goertz (2015).

The ALM (Algorithm 2) solves the problem

argmin
P,Y

{
− log |P |+ tr(ĜP ) + ρ‖Y ‖1,off

}

subject to P = Y being positive definite. It invokes the ADMM algorithm to find sparse positive
definite estimates of P0 by introducing augmented Lagrangian. It furthermore carefully selects
augmented Lagrangian penalty parameter µk so that the positive definiteness is achieved throughout
the iterations. For the initial estimator P̃ in lower dimensions, we take (Ĝ(D̂))−1. The shrinkage
operator in Step 4 of Algorithm 2 is defined as shrink(M,ν) = sign(Mrs) max(|Mrs| − ν, 0) for a
matrix M = (Mrs)r,s=1,...,p and some ν ≥ 0. Step 5 of Algorithm 2 requires to update µk. It is
reduced by a constant factor ηµ on every Nµ iteration till a lower bound is achieved by following
the idea of Scheinberg et al. (2010). That is, set µ as max{µηµ, sµ} to reduce µ by a constant factor
ηµ on every Nµ iteration. In this paper, we choose µ0 = .01, Nµ = 10, sµ = 10−3 and ηµ = 1/4.
Finally, we terminate the ALM algorithm following the stopping rules in (20) in Scheinberg et al.
(2010) except that the first condition is replaced by stopping after 1000 iterations.
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Algorithm 2: Alternating linearization method algorithm for graphical local Whittle

Input: Y 0 = diag(P̃ ) with initial estimator P̃ of P0, Λ0 = 0, µ0, ρ.
Output: Sparse estimation of P0.
Repeat until convergence:
for k = 0, 1, . . . do

1. Let W k+1 = Y k + µk(Λ
k − Ĝ) and perform the singular value decomposition

W = Udiag(η1, . . . , ηp)V
∗.

2. Xk+1 = Udiag(γ1, . . . , γp)V
∗, where γi = .5(ηi +

√
η2
i + 4µk), i = 1, . . . , p.

3. Y k+1 = shrink(Xk+1 − µk(Ĝ− (Xk+1)−1), µkρ).
4. Λk+1 = Ĝ− (Xk+1)−1 + (Xk+1 − Y k+1)/µk.
5. Pick µk+1 ≤ µk.

end

We conclude with a discussion on the criterion (4.1).

Remark 4.1. The criterion (4.1) is adapted from Foygel and Drton (2010). The log-likelihood
function in equation (2) in Foygel and Drton (2010) which gives an estimate for the inverse co-
variance matrix of a Gaussian model is replaced by the negative log-likelihood function ` in (1.3)
in terms of the matrix P0 = G−1

0 . The criterion seems to perform well in our simulation study.
However, from a theoretical perspective, a consistency result can only be established when the pe-
nalization term in (4.1) is chosen in dependence of the rate of convergence of the (r, s)th component
of Ĝ(D̂) around the true G0,rs. In their theoretical results, Foygel and Drton (2010) considered
independent and identically distributed Gaussian random vectors. In this case, the penalization
depends on the convergence rate of the deviation of the sample covariance matrix around the true

covariance matrix, that is

√
log(p)
N . Foygel and Drton (2010) proved that the eBIC selects the

correct model consistently in a high-dimensional regime p,N → ∞; see Theorem 5 in Foygel and
Drton (2010). To establish an analogous consistency result in our setting, we suggest to replace the

penalization log(p)
N in the eBIC objective function by δ2 in (3.19), since δ gives the convergence rate

of the maximum norm of Ĝ(D̂) around the true G0. The detailed proof of such a consistency result
goes beyond the scope of this work and, from a practical perspective, the usage of (4.1) seems to be
more natural, since including δ in the penalization would involve a number of unknown parameters.

5 Simulation study

In this section, we examine the proposed methods through simulations. Our two-stage approach
first estimates the memory parameters D0 and non-sparse long-run variance matrix G0 based on
the local Whittle estimator (1.6). Then, we apply either thresholding or graphical local Whittle
estimation to get sparse estimators. Several tuning parameters need to be selected for our methods.
We comment first on the number of frequencies used in local Whittle estimation. Details about the
selection of tuning parameters for sparse estimation are provided in the subsequent sections.

The selection of the number of frequencies m is important in practice and should be balanced:
be small enough to capture long-range dependence and large enough to get reliable estimates. In
univariate local Whittle estimation, asymptotic theory suggests m = O(N .8); see Robinson (1995b).
There are several papers studying data dependent bandwidth. In this regard, the most influential
paper is Henry (2001). Henry (2001) suggests a bandwidth minimizing the mean squared error of
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Figure 1: Sparsity patterns of DGPs.

the univariate local Whittle estimator. A visual approach to ensure the balance between capturing
long-range dependence and getting reliable estimates is proposed in Baek et al. (2020). Baek et al.
(2020) used the so-called local Whittle plots which present estimates of the memory parameters as
function of the tuning parameter m supplemented with confidence intervals.

In our simulation study we base our choice on the asymptotic theory in Robinson (1995b)
suggesting m = [N .8], where [x] is the largest integer less than or equal to x.

5.1 Thresholding local Whittle estimation

We consider the following three data generating processes (DGPs) to evaluate the finite sample
performance of the thresholding local Whittle method. The one-sided and two-sided VARFIMA(0,
D, 0) (Vector Autoregressive Fractionally Integrated Moving Average) models are used to generate
multivariate long-range dependent time series. See Kechagias and Pipiras (2015a,b) for definitions
of these models. We consider dimensions p = 20, 40, 60 with sample sizes N = 200, 400, 1000. Long-
range dependent parameters D0 are selected at random from .1 to .45, if not specified otherwise.
We use the notation G(r, s) to denote the (r, s)th entry of G0. To be more precise, the DGP’s are
given as follows:

(thDGP1) One-sided VARFIMA(0, D, 0) with G0 = (I[p/20] ⊗ G1), where the diagonal entries
of G1 are .159 except G1(1, 1) = G1(6, 6) = .312, G1(11, 11) = G1(14, 14) = .212,
G1(3, 3) = G1(20, 20) = .189, and G1(1, 6) = −.208 − .064i, G1(3, 20) = −.074 + .015i,
and G1(11, 14) = −.105− .013i.

(thDGP2) Two-sided VARFIMA(0, D, 0) with G0 = (I[p/20]⊗G2), where the diagonal entries of G2

are 1 and G2(3, 9) = .5 + .2i, G2(5, 14) = .4 + .2i.

(thDGP3) Two-sided VARFIMA(0, D, 0) with banded G0 matrix given by G0 = (I[p/20] ⊗ G3),
where the diagonal entries of G3 are 1 and G3(r, r + 1) = .4 + .2i, r = 1, . . . , 19.

For the reader’s convenience, the sparsity patterns imposed on Gk, k = 1, 2, 3, are depicted in
Figure 1.

The thresholding parameter ρ is selected based on cross-validation introduced in Section 4.1.
We set L to be the smallest and the largest value of |Ĝ(D̂)| in (1.6). We evaluated the performance
of the thresholding local Whittle estimator using the mean squared error of the parameters D̂,
total number of misspecified coefficients

∑
r≥s(1{Tρ(Ĝrs(D̂)=0} − 1{G0,rs=0})

2, the Frobenius norm

‖Tρ(Ĝ(D̂))−G0‖F and the spectral norm ‖Tρ(Ĝ(D̂))−G0‖. The performance measures are calcu-
lated based on 1000 iterations.

Figure 2 shows the proportion of times each component is estimated to be non-zero using
our thresholding local Whittle approach with p = 20 and N = 200. The estimation is close to
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Figure 2: The number of times having non-zero coefficients using thresholding local Whittle esti-
mation with cross-validation tuning parameter selection where p = 20, N = 200.

the true sparsity pattern though some locations are more difficult to be estimated correctly. For
example, in thDGP1, G1(3, 20) is detected as non-zero less frequently, but this is natural since
|G1(3, 20)| = .075 is smaller than the other coefficients. However, such misspecification vanishes as
sample size increases. Table F.3 in Appendix F shows the performance measures calculated for G0.
It can be observed that all performance measures are decreasing as the sample size increases.

5.2 Graphical local Whittle estimation

We consider the following three DGPs to see the performance of the graphical local Whittle estima-
tion. We introduce the matrices Pk, k = 1, 2, 3, to define the sparsity pattern of P0. The notation
Pk(r, s), k = 1, 2, 3, denotes the (r, s)th entry of Pk.

(DGP1) One-sided VARFIMA(0, D, 0) with P0 = (I[p/20] ⊗P1), where P1(r, r) = 6.28, P1(1, 6) =
4.20 + 1.29i, P1(3, 20) = 2.46− .51i and P1(11, 14) = 3.12 + .39i.

(DGP2) Two-sided VARFIMA(0, D, 0) with P0 = (I[p/20] ⊗ P2), where the diagonal entries of P2

are 1 and P2(3, 9) = .5 + .2i, P2(5, 14) = .4 + .2i.

(DGP3) Two-sided VARFIMA(0, D, 0) with banded P0 matrix given by P0 = (I[p/20]⊗P3), where
the diagonal entries of P3 are 1 and P3(r, r + 1) = .2 + .1i, r = 1, . . . , 19.

The penalty parameter ρ is chosen by the eBIC in (4.1) with γ = 1. Also, the ALM algorithm
requires the Lagrangian penalty parameter, which as noted above is set to decrease by 1

4 on every
10th iteration with µ0 = 10−2 but it is taken no smaller than 10−6. The same performance measures
are used as those for thresholding local Whittle estimation in Section 5.1, but the inverse of long-run
variance P0 is used instead of G0.

Figure 3 shows the proportions of estimated non-zero coefficients in Pk, k = 1, 2, 3, when the di-
mension is p = 20 and the sample size is N = 200. Note that the sparsity patterns of Pk, k = 1, 2, 3,
are the same as in Figure 1. It can be observed that the graphical local Whittle estimator recovers
the sparsity pattern of the underlying model. For example, the non-zero coefficient P1(11, 14) is
found to be non-zero about 90% of times by our proposed method. More detailed performance mea-
sures can be found in Table F.4. Table F.4 suggests that for all considered models our performance
measures tend to improve as the sample size increases for fixed dimension. The other way around,
for fixed sample size N , the performance measures are getting worse as the dimension increases.
We can conclude that the graphical local Whittle estimator correctly identifies zero coefficients and
yields estimates close to the true values as the sample size increases.
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Figure 3: The number of times having non-zero coefficients using graphical local Whittle estimation
with eBIC tuning parameter selection where p = 20, N = 200.
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Figure 4: Time plot (top left), sample ACF plot (top right), sample PACF plot (bottom left) and
the local Whittle estimators (bottom right) for S&P 500.

6 Real data application

In this section, we apply our proposed methods to 31 realized volatilities obtained by aggregating
the 5-min within-day returns taken from the Oxford Man Institute of Quantitative Finance (http:
//www.oxford-man.ox.ac.uk). We adjusted the different opening days over the stock markets by
applying linear interpolation and log-transforming the data. Furthermore, we removed the possible
mean changes in the data by following the proposed procedure in Baek and Pipiras (2014). We
also studentized each series to have zero-mean and unit variance in order to focus on volatility
linkage. The total number of observations is 1001 dating from Jan 4, 2016 to Oct 31, 2019. The 31
global stock indices are AEX index (AEX), All Ordinaries (AORD), Bell 20 index (BFX), S&P BSE
Sensex (BSESN), PSI All Shares Gross Return Index (BVLG), BVSP BOVESPA Index (BVSP),
Dow Jones Industrial Average (DJI), CAC 40 (FCHI), FTSE MIB (FTMIB), FTSE 100 (FTSE),
DAX (GDAXI), S&P/TSX Composite index (GSPTSE), HANG SENG Index (HSI), IBEX 35
Index (IBEX), Nasdaq 100 (IXIC), Korea Composite Stock Price Index (KS11), Karachi SE 100
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Figure 5: Thresholding local Whittle estimation.
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Figure 6: Graphical local Whittle estimation.

Index (KSE), IPC Mexico (MXX), Nikkei 225 (N225), NIFTY 50 (NSEI), OMX Copenhagen 20
Index (OMXC20), OMX Helsinki All Share Index (OMXHPI), OMX Stockholm All Share Index
(OMXSPI), Oslo Exchange All-share Index (OSEAX), Russel 2000 (RUT), Madrid General Index
(SMSI), S&P 500 Index (SPX), Shanghai Composite Index (SSEC), Swiss Stock Market Index
(SSMI), Straits Times Index (STI), EURO STOXX 50 (STOXX50E).

Figure 4 shows some exploratory plots for S&P 500 such as time plot (top left), sample autocor-
relation plot (top right), sample partial autocorrelation plot (bottom left) and long-range dependent
parameter estimates over the number of frequencies used (bottom right). It shows typical features
of long-range dependent time series: non-cyclical trends, slow decay of autocorrelations and mem-
ory parameters close to .5. This suggests that multivariate long-range dependence modeling is
meaningful and we applied our methods to estimate long-run variance and precision matrices.

Sparse long-run variance matrix estimation by thresholding is presented in Figure 5. The left
panel shows the real parts of Ĝ and the imaginary parts can be found in the middle panel. The right
panel presents the sparsity pattern, that is, the locations of the non-zero coefficients are colored
dark blue. Figure 6 follows the same structure as Figure 5 but shows the estimated sparse precision
matrix P̂ using graphical local Whittle estimation. The penalty parameter is selected by using
eBIC in (4.1) with γ = 1. BSESN and NSEI, both Indian market indices, showed the largest real
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Figure 7: Network graph representation.

coefficients in absolute term.
Observe that the thresholding method gives sparser estimation. We also observe the cluster-

ing of stock market indices for both long-run variance and precision matrices. It is seen more
clearly from a network representation of linkages as in Figure 7. More interestingly, both meth-
ods give similar clusterings. The isolated nodes based on P̂ correspond to India (BSESN/NSEI),
China (SSEC), South Korea (KS11), Hong Kong (HSI), Singapore (STI), Mexico (MXX), Portugal
(BSVP), Pakistan (KSE). The sparse long-run variance Ĝ using thresholding adds Japan (N225)
and Australia (AORL). That is, it seems that our empirical analysis tells that stock market indices
can be roughly divided into the US-European market and somewhat independent markets from
the rest of the world including Asia, India, Australia and Mexico in late 2010s. The threshold-
ing method seems to further distinguish US and European markets. In fact, all US stock indices
showed larger values of memory parameter estimates by having more than .4 which is not the case
for European market indices. It is particularly interesting to see the grouping of multinational
realized volatilities according to regional or spatial dependence.

Finally, we note but do not include the results here, that the analysis of the data assuming
short-range dependence led to highly non-sparse patterns for the considered connectivity matrices.
These findings were consistent with the scenario where we simulated data from LRD models as in
Section 5 but worked as if they were SRD.

7 Conclusions

In this work, we derived consistency results for the long-run variance and precision matrices in a
non-asymptotic regime allowing the underlying time series to admit a general dependence structure
including long-range dependence. The results are derived under mild assumptions on the underlying
time series which is allowed to be either Gaussian or have a linear representation. The shrinkage
techniques are thresholding and graphical local Whittle estimation. Our non-asymptotic results
can be used to infer consistency in a high-dimensional regime where the number of component
series can be large compared to the sample size.

The key technical contribution is the incorporation of the memory parameter matrix which
carries information about the dependence structure of the underlying time series. Our results allow
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estimating those memory parameters simultaneously while estimating the long-run variance and
the precision matrices sparsely.

We see the proposed proof techniques as a basis to study other questions concerning high-
dimensional long-range dependence. Possible future directions include the use of other shrinkage
methods, for example, adaptive penalizations; sparse estimation of fractionally (co)integrated vector
autoregressive (VAR) models and sparse estimation of linear regression with long-range dependent
errors.

A Quantities in main results and special cases

In this section we provide the expressions for several quantities appearing in Propositions 3.1–
3.4. In addition, we will discuss the case when the underlying time series admits only short- or
long-range dependence.

Recall that the non-asymptotic bounds in Propositions 3.1–3.4 are all of the form

C|||G|||
√

log(p)

Ri
+ Ti with Ri = min{si,NRi1, s2

i,NRi2}. (A.1)

Here, Ri’s arise in bounds on the probabilistic parts and Ti’s on deterministic parts. The sequences
si,N can be found in Propositions 3.1–3.4. The quantities Ri1,Ri2 and Ti are respectively given in
Tables A.1 and A.2 for Propositions 3.1–3.4.

Recall that ∆1,∆2 determine the interval of admissible estimates of the memory parameters
and the quantity s∆N is defined in (3.13). We further introduce a few quantities which will allow us
to express our bounds in a simplified way and emphasize the necessary distinction between different
ranges of the memory parameters as will become clearer in the proofs. Let

s∆u = max
r=1,...,p

{∆2, (
1

4
+ d0,r)1{d0,r< 1

4
}},

s∆l,1 = max
r=1,...,p

d0,r1{d0,r<∆1+ 1
2
},

s∆l,2 = max
r=1,...,p

(
1

4
1{d0,r<min{∆1+ 1

2
, 1
4
}} + d0,r1{d0,r<∆1+ 1

2
}),

(A.2)

where the subscripts u and l allude to the dependence on ∆2 and ∆1, respectively.
For the bounds on the deterministic parts we will use

Qm = |||G||| 72(cos(λm/2))−2

π(1 + 2 min{∆1,−∆2})
+ cG,24(2 + log(m)) (A.3)

and ∆̃r = (d0,r− 1
2 +∆)1{d0,r≥∆1+ 1

2
}+∆11{d0,r<∆1+ 1

2
}. Recall further that q appears in Assumption

2.
As a corollary of Proposition 3.5, we give the result where the underlying process is known to

admit only short- or long-range dependence, that is, the true memory parameters satisfy D0 < 0.

Corollary A.1. Let {Xn}n∈Z be a p-dimensional, stationary, centered time series with spectral
density fX and suppose Assumptions 1–4 are satisfied. Then, there are positive constants c1, c2

such that for any C ≥ 1,
P(‖Ĝ(D̂)−G0‖max > δ) ≤ c1p

2−c2C

with δ as in (3.19) and ν, νi, i = 1, 2, 3, are as in (3.14), (3.15), (3.16) and (3.17) with

R11 = m1−2∆2+2εN−2ε, R12 = min{m2−4 s∆u+4εN−4ε,m
3
2
−2 s∆u+2εN−2ε},

R21 = m1−2∆2 , R22 = m2−4∆̄u ,

R31 = min
{
m1−2∆2 ,m2∆,m1−2 s∆l,1

}
, R32 = min

{
m2−4 s∆u ,m4∆,m2−4 s∆l,2

}
,

(A.4)
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Prop. Ri1 and Ri2 in (A.1) (probabilistic parts)

3.1
R11 = min

{
m1−2∆2+2εN−2ε,m1−∆2−∆1+εN∆1−ε,mN∆1−ε

}
,

R12 = min
{
m2−4 s∆u+4εN−4ε,m

3
2
−2 s∆u−2∆1+2εN2∆1−2ε,mN2∆1−2ε,m2

( m∑

j=1

λ4∆1
j

)−1}
.

3.2 R21 = min
{
m1−2∆2 ,mN2∆1

}
, R22 = min

{
m2−4∆̄u ,m2

( m∑

j=1

λ4∆1
j

)−1}
.

3.3
R31 = min

{
m1−2∆2 ,m2∆,m1−2 s∆l,1+2∆1 ,mN2∆1

}
,

R32 = min
{
m2−4 s∆u ,m4∆,m4∆N1+4∆1 ,m2−4 s∆l,2+4∆1 ,m2N4∆1 ,m2

( m∑

j=1

λ4∆1
j

)−1}
.

3.4
R41 = min{m`−1+2∆,m1−2∆2}, R42 = min{m`−2+4∆,m2−4∆̄u}.

Table A.1: Expressions for Ri1 and Ri2 in (A.1).

and it is assumed that ε ∈ (0, 1
2).

The corollary is a simple consequence of setting ∆1 = 0 in Proposition 3.5.

B Proofs of the main results

In this section we will give bounds on the probabilistic and deterministic terms in (3.12), stated
respectively in Lemmas B.1 and B.2. Lemma B.1 focusses on results under the assumption that
the underlying process is Gaussian. Its analogue for linear processes can be found in Appendix E.
Up to a constant the bounds are the same as for the Gaussian case. For this reason all proceeding
results remain true. Note that Lemma B.2 only relies on assumptions on the spectral density and
remains valid as well.

The following Lemma B.1 gives multiple upper bounds on the probabilistic term in (3.12).
Those different bounds are used later depending on whether the true parameters d0,r and d0,s are
positive or negative. Recall in particular the notation tj,r(d) below (3.9) and ar, br in (3.10)–(3.11).
Let

Lrs,i = cr,i,N c̃s,i,N

(
‖T (ar, as)‖+ sup

(dr,ds)∈[ar,br]×[as,bs]
‖T (dr, ds)‖

)
, i = 1, . . . , 4,

Lrs,5 = Nmax{d0,r,0}+max{d0,s,0}

(
‖T (ar, as)‖F + sup

(dr,ds)∈[ar,br]×[as,bs]
‖T (dr, ds)‖F

) (B.1)

with
T (dr, ds) = diag(t1,r(dr)t1,s(ds), . . . , tm,r(dr)tm,s(ds)),

T (dr, ds) = diag(‖∇t1,r(dr)t1,s(ds)‖F , . . . , ‖∇tm,r(dr)tm,s(ds)‖F )
(B.2)
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Prop. Ti in (A.1) (deterministic parts)

3.1
T1(ε) = cG,1

1

2π
λ2q−2ε
m +

1

2πm

(
1 +

1

2ε

)
λ−2ε

1 Qm

3.2
T2 = cG,1

1

2π
λ2q
m +

1

πm
log(m)Qm

3.3
T3 = max

r=1,...,p
T3(∆̃r)

= max
r=1,...,p

(
cG,1

1

2π
λ2q
m

1

2∆̃r

+
1

2π
m−2∆̃r

(
1 +

1

1− 2∆̃r

)
Qm

)

3.4
T4 = cG,1

1

2π
λ2q
m

( 1

2∆
+ 1
)

+
1

2πm

(
`1−2∆

(
1 +

1

1− 2∆

)
+ log(m)

)
Qm

Table A.2: Expressions for Ti in (A.1).

and

cr,1,N = Nmax{d0,r,0}, c̃s,1,N = Nmax{d0,s,0}; cr,2,N = Nmax{d0,r, 14}, c̃s,2,N = Nmax{d0,s, 14};

cr,3,N = Nmax{d0,r, 14}, c̃s,3,N = m
1
4Nmax{d0,s,0}; cr,4,N = m

1
4Nmax{d0,r,0}, c̃s,4,N = m

1
4Nmax{d0,s,0}.

Note that cr,i,N is different from c̃r,i,N only for i = 3. This notation though will allow writing our
arguments in a more unified way.

Lemma B.1. Let {Xn}n∈Z be a p-dimensional stationary, centered, Gaussian time series with
spectral density fX as in (1.1). Then, there are positive constants c1, c2 such that

P
(

sup
D∈Ω
|Ĥrs(D)− EĤrs(D)| > |||G|||ν

)
≤ B(r, s, i), i = 2, . . . , 5, (B.3)

for ν2 ≥ γ4L2
rs,i/(m

2c2), where

B(r, s, i) = c1 exp

(
− c2 min

{
νm

γ2
s∆NLrs,1

,
ν2m2

γ4
s∆2
NL

2
rs,i

})
(B.4)

with r 6= s if i = 3 and Ω is given in (3.10). The constant γ =
√

2
Γ( 1

2
)

bounds the sub-Gaussian norm

of a standard normal random variable as in (D.1) and s∆N is defined in (3.13).

Proof: To prove the desired concentration inequality, we first introduce some general notation. For
a fixed frequency, the periodogram in (1.4) can be written as

IX(λj) =
1

2π

(
X ′(CjC ′j + SjS

′
j)X + iX ′(CjS′j − SjC ′j)X

)
(B.5)

with X ′ = [X1 : · · · : XN ] and

C ′j =
1√
N

(cos(λj), . . . , cos((N − 1)λj), 1),

S′j =
1√
N

(sin(λj), . . . , sin((N − 1)λj), 0);

(B.6)
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see equation (A.6) in Sun et al. (2018). The event of interest can be separated into real and
imaginary parts as

P
(

sup
D∈Ω
|Ĥrs(D)− EĤrs(D)| > |||G|||ν

)

≤ P
(

sup
D∈Ω
|<(Ĥrs(D)− EĤrs(D))| > 1

2
|||G|||ν

)

+ P
(

sup
D∈Ω
|=(Ĥrs(D)− EĤrs(D))| > 1

2
|||G|||ν

)
.

(B.7)

Note that the imaginary part of the diagonal elements is zero, that is, =(e′rIX(λj)er) = 0. We
consider the diagonal elements first (r = s) and then distinguish the real and imaginary parts in
(B.7) for the off-diagonal elements (r 6= s).

Diagonal elements: To rewrite the real-valued diagonal elements Ĥrr(D) as a quadratic form,
we define the N × 2m matrix

R′m =
[
C1 : S1 : · · · : Cm : Sm

]
(B.8)

and the matrix-valued function

Tr(d) = diag(t1,r(d), t1,r(d), . . . , tm,r(d), tm,r(d)). (B.9)

Then, in view of (B.5), (B.8), (B.9) and since e′rtj(D) = e′rtj,r(dr), Ĥrr(D) can be written as

1

m
e′r

m∑

j=1

tj(D)IX(λj)tj(D)er =
1

2πm
e′r

m∑

j=1

tj(D)X ′(CjC ′j + SjS
′
j)X tj(D)er

=
1

2πm

m∑

j=1

E ′rΣ
1
2
rrtj,r(dr)(CjC

′
j + SjS

′
j)tj,r(dr)Σ

1
2
rrEr

=
1

2πm
E ′rΣ

1
2
rrR

′
mT

2
r (dr)RmΣ

1
2
rrEr

(B.10)

with e′rX ′ = E ′rΣ
1
2
rr, where Er = (εr,1, . . . , εr,N )′ is Gaussian with E(ErE ′r) = IN and Σrr = (Σrr(n−

k))n,k=1,...,N = E(X er(X er)′). In (B.11) below, we apply Theorem D.1 with K = 1 and R =
br − ar ≤ 1 to obtain

P
(

sup
D∈Ω
|Ĥrr(D)− EĤrr(D)| > |||G|||ν

)

= P
(

sup
d∈[ar,br]

|E ′rΣ
1
2
rrR

′
mT

2
r (d)RmΣ

1
2
rrEr − E(E ′rΣ

1
2
rrR

′
mT

2
r (d)RmΣ

1
2
rrEr)| > 2πm|||G|||ν

)

= P
(

sup
d∈[ar,br]

|E ′rR(d)Er − E(E ′rR(d)Er)| > 2πm|||G|||ν
)

≤ c1 exp

(
− c2 min

{
νm|||G|||
γ2T̃1

,
ν2m2|||G|||2

γ4T̃ 2
i

})
(B.11)

≤ c1 exp

(
− c2 min

{
νm

γ2
s∆N L̃1

,
ν2m2

γ4
s∆2
N L̃

2
i

})
(B.12)
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for ν2 ≥ γ4T̃ 2
i /(c2m

2|||G|||2) with i = 2, 3, 4 and R(d) = Σ
1
2
rrR′mT

2
r (d)RmΣ

1
2
rr and

T̃1 = ‖Am‖
(
‖T 2

r (ar)‖+ sup
d∈[ar,br]

‖ ∂
∂d
T 2
r (d)‖

)
,

T̃2 = T̃3 = ‖Am‖F
(
‖T 2

r (ar)‖+ sup
d∈[ar,br]

‖ ∂
∂d
T 2
r (d)‖

)
,

T̃4 = ‖Am‖
(
‖T 2

r (ar)‖F + sup
d∈[ar,br]

‖ ∂
∂d
T 2
r (d)‖F

)
,

(B.13)

where Am = RmΣrrR
′
m. Though T̃2 = T̃3, we bound them differently in (B.12). Furthermore,

L̃1 = Lrr,1, L̃2 = Lrr,2, L̃3 = Lrr,4, L̃4 = Lrr,5 (B.14)

with Lrr,1, Lrr,2, Lrr,4 and Lrr,5 as in (B.1). We get (B.12) by bounding the quantities in (B.13).
Note that

‖Am‖ = ‖RmΣrrR
′
m‖ ≤ ‖Rm‖2‖Σrr‖ ≤ c|||G|||Nmax{2d0,r,0}

s∆N , (B.15)

‖Am‖F = ‖RmΣrrR
′
m‖F ≤ ‖Rm‖2‖Σrr‖F ≤ c|||G|||Nmax{2d0,r, 12} log(N)

1
2 s∆N , (B.16)

‖Am‖F ≤
√

2m‖RmΣrrR
′
m‖ ≤ c|||G|||

√
2mNmax{2d0,r,0}

s∆N , (B.17)

where we used the submultiplicativity of the spectral norm, Lemma D.1 and the fact that ‖A‖F ≤√
rk(A)‖A‖ for a matrix A for the first inequalities in (B.15)–(B.17), respectively. The last in-

equalities in (B.15) and (B.16) for the spectral and Frobenius norms of Σrr follow by Lemmas C.12
and C.13. Furthermore, we used the fact that the spectral norm of Rm can be calculated as

‖Rm‖ = 1;

see Lemma C.4 in Sun et al. (2018).
Real part (off-diagonal): The real part of the off-diagonal elements <(Ĥrs(D)) can be written

in terms of (B.5) as

1

m
e′r

m∑

j=1

tj(D)<(IX(λj))tj(D)es =
1

2πm
e′r

m∑

j=1

tj(D)X ′(CjC ′j + SjS
′
j)X tj(D)es. (B.18)

As in (B.10), we will write (B.18) as a quadratic form but now using (e′rX ′ e′sX ′) = E ′Σ 1
2 , where

E ′ = (E ′r E ′s) is a Gaussian vector with E(EE ′) = I2N and

Σ =

(
Σrr Σrs

Σsr Σss

)
with Σrs = (Σrs(n− k))n,k=1,...,N = E(X er(X es)′). (B.19)

For this, define the 4m× 2N matrix

R̃m =

(
Rm 02m×N

02m×N Rm

)

with Rm as in (B.8). Furthermore, define the matrix F (dr, ds) = diag(Tr(dr), Ts(ds)) with Tr as in
(B.9) and

Mm =

(
0m,m Im
0m,m 0m,m

)
. (B.20)
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Write

e′r

m∑

j=1

tj(D)X ′(CjC ′j + SjS
′
j)X tj(D)es = E ′Σ 1

2 R̃′mF (dr, ds)M2mF (dr, ds)R̃mΣ
1
2E

= E ′R(dr, ds)E

with
R(dr, ds) = Σ

1
2 R̃′mF (dr, ds)M2mF (dr, ds)R̃mΣ

1
2 .

In order to apply Theorem D.1, we further write

P
(

sup
D∈Ω
|
m∑

j=1

e′r(tj(D)X ′(CjC ′j + SjS
′
j)X tj(D)− E(tj(D)X ′(CjC ′j + SjS

′
j)X tj(D)))es| > πm|||G|||ν

)

= P
(

sup
(dr,ds)∈[ar,br]×[as,bs]

|E ′R(dr, ds)E − E(E ′R(dr, ds)E)| > πm|||G|||ν
)
. (B.21)

Note that the matrix R(dr, ds) can be rewritten as

R(dr, ds) = Σ
1
2A−1

N,iR̃
′
mA2m,iF (dr, ds)M2mF (dr, ds)A2m,iR̃mA−1

N,iΣ
1
2 (B.22)

for i = 1, . . . , 4 with

Am,1 = diag(cr,1,NIm, c̃s,1,NIm), Am,2 = diag(cr,2,NIm, c̃s,2,NIm),

Am,3 = diag(cr,3,NIm, c̃s,3,NIm), Am,4 = m
1
4Am,1.

(B.23)

The matrices AN,i in (B.22) are defined by replacing Im’s in (B.23) by IN . These matrices are to

normalize Σ
1
2 in (B.22).

We continue to bound (B.21) by applying Theorem D.1. In order to verify the applicability of
Theorem D.1, note that the matrix A2m,iF (dr, ds)M2mF (dr, ds)A2m,i in (B.22) is not diagonal but
can be represented as a unitary transformation of a diagonal matrix

A2m,iF (dr, ds)
′M2mF (dr, ds)A2m,i

= A2m,i

(
02m,2m Tr(dr)Ts(ds)
02m,2m 02m,2m

)
A2m,i

=

(
02m,2m cr,i,N c̃s,i,NTr(dr)Ts(ds)
02m,2m 02m,2m

)

=

(
I2m 02m,2m

02m,2m I2m

)(
cr,i,N c̃s,i,NTr(dr)Ts(ds) 02m,2m

02m,2m 02m,2m

)(
02m,2m I2m

I2m 02m,2m

)
.

(B.24)

For this reason, Theorem D.1 remains applicable due to Remark D.1. In (B.25) below, we apply
Theorem D.1 with K = 2 and R = br − ar ≤ 1 to obtain

P
(

sup
(dr,ds)∈[ar,br]×[as,bs]

|E ′R(dr, ds)E − E(E ′R(dr, ds)E)| > πm|||G|||ν
)

≤ c1 exp

(
− c2 min

{
νm|||G|||
γ2T1

,
ν2m2|||G|||2
γ4T 2

i

})
(B.25)

≤ c1 exp

(
− c2 min

{
νm

γ2
s∆NLrs,1

,
ν2m2

γ4
s∆2
NL

2
rs,i

})
(B.26)
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for ν2 ≥ γ4T 2
i /(c2m

2|||G|||2) and i = 2, . . . , 5 with

T1 = ‖Bm,1‖Lrs,1, Ti = ‖Bm,i‖FLrs,i, T5 = ‖Bm,1‖Lrs,5 (B.27)

for i = 2, . . . , 4, where the Lrs,i’s are given in (B.1) and

Bm,i = R̃mA−1
N,iΣA−1

N,iR̃
′
m (B.28)

for i = 1, . . . , 4. The Lrs,i’s in (B.27) can indeed be represented as in (B.1) due to (B.24) and
Remark D.1, and since ‖Tr(dr)Ts(ds)‖ = ‖T (dr, ds)‖ and ‖Tr(dr)Ts(ds)‖F =

√
2‖T (dr, ds)‖F and

similarly with ∇, where T (dr, ds) is in (B.2). We will now discuss bounds on the Frobenius and
spectral norms of Bm,i to get (B.26).

The relation (B.26) is a consequence of bounding the quantities in (B.27) as follows. Let c
denote a generic constant which might differ from line to line. Then, with the explanations given
below,

‖Bm,1‖ = ‖R̃mA−1
N,1ΣA−1

N,1R̃
′
m‖ ≤ ‖R̃m‖2‖A−1

N,1ΣA−1
N,1‖

≤ ‖c−2
r,1,NΣrr‖+ ‖c̃ −2

s,1,NΣss‖
= N−max{2d0,r,0}‖Σrr‖+N−max{2d0,s,0}‖Σss‖ ≤ cs∆N |||G|||,

(B.29)

‖Bm,2‖F = ‖R̃mA−1
N,2ΣA−1

N,2R̃
′
m‖F ≤ ‖R̃m‖2‖A−1

N,2ΣA−1
N,2‖F

≤ ‖c−2
r,2,NΣrr‖F + ‖c̃ −2

s,2,NΣss‖F
= N−max{2d0,r, 12}‖Σrr‖F +N−max{2d0,s, 12}‖Σss‖F ≤ cs∆N |||G|||,

(B.30)

‖Bm,3‖F = ‖R̃mA−1
N,3ΣA−1

N,3R̃
′
m‖F

≤ ‖R′mc−1
r,3,NΣrrc

−1
r,3,NRm‖F + ‖R′mc̃ −1

s,3,NΣssc̃
−1
s,3,NRm‖F

≤ ‖R′mc−1
r,3,NΣrrc

−1
r,3,NRm‖F +

√
2m‖R′mc̃ −1

s,3,NΣssc̃
−1
s,3,NRm‖

≤ ‖Rm‖2‖c−2
r,3,NΣrr‖F +

√
2m‖Rm‖2‖c̃ −2

s,3,NΣss‖
= N−max{2d0,r, 12}‖Σrr‖F +N−max{2d0,s,0}‖Σss‖ ≤ cs∆N |||G|||,

(B.31)

‖Bm,4‖F = ‖R̃mA−1
N,4ΣA−1

N,4R̃
′
m‖F

≤
√

4m‖R̃′mA−1
N,4ΣA−1

N,4R̃m‖ =
√

4‖R̃′mA−1
N,1ΣA−1

N,1R̃m‖ ≤ cs∆N |||G|||.
(B.32)

The first bounds in (B.29) and (B.30) follow from the submultiplicativity of the spectral norm and
Lemma D.1, respectively. Then, we use Lemma D.2 to eliminate the off-diagonal matrix blocks, and
Lemmas C.12 and C.13 are used to bound the spectral and Frobenius norms of Σrr. In (B.31), we
first apply Lemma D.2 and then the fact that ‖A‖F ≤

√
rk(A)‖A‖ for a matrix A. Note also that

rk(AB) ≤ min{rk(A), rk(B)} for two matrices A,B. Similarly, we applied ‖A‖F ≤
√

rk(A)‖A‖ in

(B.32) to use (B.29). Note also that ‖R̃m‖2 = ‖Rm‖2 = 1, where the first equality is due to the
block diagonal structure of R̃m and the second equality follows by Lemma C.4 in Sun et al. (2018).

Imaginary part (off-diagonal): The imaginary part of the off-diagonal elements =(Ĥrs(D)) can
be written in terms of (B.5) as

1

m
e′r

m∑

j=1

tj(D)=(IX(λj))tj(D)es =
1

2πm
e′r

m∑

j=1

tj(D)X ′(CjS′j − SjC ′j)X tj(D)es.
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Then,

P
(

sup
D∈Ω
|=(Ĥrs(D)− EĤrs(D))| > 1

2
|||G|||ν

)

≤ P
(

sup
D∈Ω
|
m∑

j=1

e′r(tj(D)X ′CjS′jX tj(D)− E(tj(D)X ′CjS′jX tj(D)))es| >
πm

2
|||G|||ν

)

+ P
(

sup
D∈Ω
|
m∑

j=1

e′r(tj(D)X ′SjC ′jX tj(D)− E(tj(D)X ′SjC ′jX tj(D)))es| >
πm

2
|||G|||ν

)
.

(B.33)

We focus on the first probability term in the bound, since the second can be dealt with analogously.
Define the 2m× 2N matrix

Qm =

(
Q1,m 0m×N
0m×N Q2,m

)

with
Q′1,m =

[
C1 : · · · : Cm

]
, Q′2,m =

[
S1 : · · · : Sm

]
.

Furthermore, define the matrix F̃ (dr, ds) = diag(T̃r(dr), T̃s(ds)) in terms of the function T̃r(d) =
diag(t1,r(d), . . . , tm,r(d)) and recall Mm in (E.6) to write

e′r

m∑

j=1

tj(D)X ′CjS′jX tj(D)es = E ′Σ 1
2Q′mF̃ (dr, ds)MmF̃ (dr, ds)QmΣ

1
2E = E ′Q(dr, ds)E

with
Q(dr, ds) = Σ

1
2Q′mF̃ (dr, ds)MmF̃ (dr, ds)QmΣ

1
2

and Σ
1
2E characterized as in (B.19). In order to apply Theorem D.1, we further write

P
(

sup
D∈Ω
|
m∑

j=1

e′r(tj(D)X ′CjS′jX tj(D)− E(tj(D)X ′CjS′jX tj(D)))es| >
πm

2
|||G|||ν

)

= P
(

sup
(dr,ds)∈[ar,br]×[as,bs]

|E ′Q(dr, ds)E − E(E ′Q(dr, ds)E)| > πm

2
|||G|||ν

)
. (B.34)

Note that the matrix Q(dr, ds) can be rewritten as

Q(dr, ds) = Σ
1
2A−1

N,iQ
′
mAm,iF̃ (dr, ds)MmF̃ (dr, ds)Am,iQmA−1

N,iΣ
1
2

for i = 1, . . . , 4 with Am,1 and AN,i, i = 1, . . . , 4 defined as in (B.23). We continue to bound (B.34).

As for the real parts of the off-diagonal elements, note that Am,iF̃ (dr, ds)
′MmF̃ (dr, ds)Am,i is not

a diagonal matrix. However, it can be rewritten as a unitary transformation of a diagonal matrix

Am,iF̃ (dr, ds)
′MmF̃ (dr, ds)Am,i

=

(
Im 0m,m

0m,m Im

)(
cr,i,N c̃s,i,N T̃r(dr)T̃s(ds) 0m,m

0m,m 0m,m

)(
0m,m Im
Im 0m,m

)
,

(B.35)

where we used the same calculations as in (B.24). Following Remark D.1, Theorem D.1 is applicable.
In (B.36) below, we apply Theorem D.1 with K = 2 and R = br − ar ≤ 1 to obtain

P
(

sup
(dr,ds)∈[ar,br]×[as,bs]

|E ′Q(dr, ds)E − E(E ′Q(dr, ds)E)| > 2πm

4
|||G|||ν

)
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≤ c1 exp

(
− c2 min

{
νm|||G|||
γ2T1

,
ν2m2|||G|||2
γ4T 2

i

})
(B.36)

≤ c1 exp

(
− c2 min

{
νm

γ2
s∆NLrs,1

,
ν2m2

γ4
s∆2
NL

2
rs,i

})
(B.37)

for ν2 ≥ γ4T 2
i /(c2m

2|||G|||2) and i = 2, . . . , 5 with

T1 = ‖Cm,1‖Lrs,1, Ti = ‖Cm,i‖FLrs,i, T5 = ‖Cm,1‖Lrs,5 (B.38)

for i = 2, . . . , 4, where the Lrs,i’s are given in (B.1) and

Cm,i = QmA−1
N,iΣA−1

N,iQ
′
m (B.39)

for i = 1, . . . , 4. Given (B.35), the Lrs,i’s in (B.38) can indeed be represented as in (B.1).

Since the quantities (B.39) are equal to those in (B.28) by replacing Qm with R̃m, the norms
‖Cm,1‖, ‖Cm,2‖F , ‖Cm,3‖F and ‖Cm,4‖F can be bounded as the norms of Bm,i, i = 1, . . . , 4, in
(B.29)–(B.32). In order to deal with Qm, note that ‖Qm‖2 = max{‖Q1,m‖2, ‖Q2,m‖2} ≤ 1, where
the equality is due to the block diagonal structure of Qm and the inequality follows by Lemma C.4
in Sun et al. (2018).

In order to get the statements (E.1)–(E.2) of the lemma, we shall get an upper bound on the
probability in (B.7). For the diagonal terms (r = s), the imaginary part is zero. As proved in
(B.12), for r = s, (B.7) can be bounded by B(r, r, i) for i = 2, 4, 5; see (B.14). For the off-diagonal
elements, one needs to get a bound on the two probabilities in (B.7). For the real part of the
off-diagonal elements, (B.26) gives the upper bound B(r, s, i), for i = 2, . . . , 5. For the imaginary
parts of the off-diagonal elements, which was further bounded in (B.33), (B.37) provides the upper
bound B(r, s, i), for i = 2, . . . , 5. Combining the different bounds leads to the desired result.

The next lemma gives a bound on the deterministic term in (3.12).

Lemma B.2. Suppose Assumptions 1–3. Then, the deterministic term in (3.12) can be bounded
as

sup
D∈Ω
|EĤrs(D)− H̃rs(D)| ≤ sup

(dr,ds)∈[ar,br]×[as,bs]

(
cG,1

1

2πm

m∑

j=1

tj,r(dr)tj,s(ds)λ
2q−d0,r−d0,s
j

+
1

2πm

m∑

j=1

tj,r(dr)tj,s(ds)j
−1λ

−d0,r−d0,s
j Qm

) (B.40)

with

Qm = |||G||| 72(cos(λm/2))−2

π(1 + 2 min{∆1,−∆2})
+ cG,24(2 + log(m)). (B.41)

Proof: The deviation of the expected value around the population quantity can be bounded as

|H̃rs(D)− EĤrs(D)|

=
∣∣∣ 1

m

m∑

j=1

tj,r(dr)tj,s(ds)λ
−d0,r−d0,s
j G0,rs − E

( 1

m

m∑

j=1

tj,r(dr)tj,s(ds)IX,rs(λj)
)∣∣∣

≤
∣∣∣ 1

m

m∑

j=1

tj,r(dr)tj,s(ds)λ
−d0,r−d0,s
j G0,rs −

1

m

m∑

j=1

tj,r(dr)tj,s(ds)λ
−d0,r−d0,s
j G0,rs(λj)

∣∣∣

35



+
∣∣∣ 1

m

m∑

j=1

tj,r(dr)tj,s(ds)λ
−d0,r−d0,s
j G0,rs(λj)− E

( 1

m

m∑

j=1

tj,r(dr)tj,s(ds)IX,rs(λj)
)∣∣∣

=
∣∣∣ 1

m

m∑

j=1

tj,r(dr)tj,s(ds)λ
−d0,r−d0,s
j (G0,rs −G0,rs(λj))

∣∣∣

+
∣∣∣ 1

m

m∑

j=1

tj,r(dr)tj,s(ds)λ
−d0,r−d0,s
j G0,rs(λj)−

1

m

m∑

j=1

tj,r(dr)tj,s(ds)E(IX,rs(λj))
∣∣∣

≤
∣∣∣ 1

m

m∑

j=1

tj,r(dr)tj,s(ds)λ
−d0,r−d0,s
j (G0,rs −G0,rs(λj))

∣∣∣

+
∣∣∣ 1

m

m∑

j=1

tj,r(dr)tj,s(ds)
(
λ
−d0,r−d0,s
j G0,rs(λj)− E(IX,rs(λj))

)∣∣∣ (B.42)

≤ cG,1
1

2πm

m∑

j=1

tj,r(dr)tj,s(ds)λ
2q−d0,r−d0,s
j +

1

2πm

m∑

j=1

tj,r(dr)tj,s(ds)j
−1λ

−d0,r−d0,s
j Qm, (B.43)

where Qm is in (B.41). We consider the two different summands in (B.42) separately to prove
(B.43). For the first summand in (B.42), the upper bound is a consequence of Assumption 2.

The second summand in (B.42) can be represented and bounded as

∣∣∣ 1

2πm

m∑

j=1

tj,r(dr)tj,s(ds)
(
λ
−d0,r−d0,s
j G0,rs(λj)− E(IX,rs(λj))

)∣∣∣

≤ 1

2πm

m∑

j=1

tj,r(dr)tj,s(ds)
∣∣∣frs(λj)− E(IX,rs(λj))

∣∣∣

≤ 1

2πm

m∑

j=1

tj,r(dr)tj,s(ds)N
−1λ

−1−d0,r−d0,s
j Qm, (B.44)

with Qm in (B.41) and the last inequality (B.44) is a consequence of Lemma C.8 given Assumptions
1 and 3.

We next prove Propositions 3.1–3.4. The proofs are all consequences of Lemmas B.1 and B.2,
and structured in the same way. We first choose a function tj(D) in (3.8)–(3.9) and then apply
Lemma B.1 to the respective probabilistic part and Lemma B.2 to the respective deterministic part
in the bound (3.12).

For the probabilistic parts in the proofs of Propositions 3.1–3.4, we note that Lemma B.1
requires ν̃2 ≥ γ4L2

rs,i/(m
2c2), i = 2, . . . , 5 with Lrs,i as in (B.1). We do not verify this condition

in the proofs since it is automatically satisfied by the bounds we get on the Lrs,i’s and under the
assumptions in Propositions 3.1–3.4. This is due to our choices of ν, ν1, ν2 and ν3 in (3.14), (3.15),
(3.16) and (3.17), which are always of the form ν = ν̃ + T , where T accounts for the respective
bias terms and ν̃ is always chosen as m−1Lrs,i - ν̃.

Proof of Proposition 3.1: To apply Lemmas B.1 and B.2, we take

tj(D) = λDj and Ω = Ω(ε) = {D ∈Mdiag|∆1Ip 4 D 4 ∆2Ip and ‖D −D0‖max ≤ ε} (B.45)

in (3.8)–(3.9). We consider the probabilistic and deterministic parts separately as in (3.12).
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Probabilistic part: We distinguish three cases depending on whether the true memory parame-
ters d0,r, d0,s are positive or negative. Therefore, we write

P
(

sup
D∈Ω(ε)

|Ĝrs(D)− E(Ĝrs(D))| > ν
)
≤

3∑

k=1

P
(

sup
D∈Ω(ε)

|Ĝrs(D)− E(Ĝrs(D))|1Ak > ν
)
, (B.46)

where

A1 = {d0,r ≤ 0, d0,s ≤ 0}, A2 = {d0,r > 0, d0,s > 0}, A3 = {d0,r > 0, d0,s ≤ 0}

and
Ω(ε) = ([d0,1 − ε, d0,1 + ε] ∩ [∆1,∆2])× · · · × ([d0,p − ε, d0,p + ε] ∩ [∆1,∆2]).

For each case, we apply Lemma B.1 and bound the respective quantities Lrs,i, i = 1, . . . , 5 in (B.1)
that then yield the desired result. We will show that, for k = 1, 2, 3,

P
(

sup
D∈Ω(ε)

|Ĝrs(D)− E(Ĝrs(D))|1Ak > |||G|||ν̃
)
≤ c1 exp

(
− c2 min

{
ν̃m

γ2Lk1
,
ν̃2m2

γ4L2
k2

})
. (B.47)

Case d0,r ≤ 0, d0,s ≤ 0: We get

Lrs,1 ≤ max
j=1,...,m

|λ2∆1
j |+ sup

(dr,ds)∈[∆1,∆2]2
max

j=1,...,m

√
2| log(λj)λ

dr+ds
j |

≤ c(1 + log(N))N−2∆1 ≤ c log(N)N−2∆1 =: L11, (B.48)

Lrs,5 ≤
( m∑

j=1

λ4∆1
j

) 1
2

+ sup
(dr,ds)∈[∆1,∆2]2

√
2
( m∑

j=1

log(λj)
2λ2dr+2ds

j

) 1
2

≤ c(1 + log(N))
( m∑

j=1

λ4∆1
j

) 1
2 ≤ c log(N)

( m∑

j=1

λ4∆1
j

) 1
2

=: L12. (B.49)

Since L11 and L21 do not depend on r, s, applying Lemma B.1 with i = 5 in (E.2) gives (B.47) with
k = 1.

Case d0,r > 0, d0,s > 0: We get

Lrs,1 = Nd0,r+d0,s

(
max

j=1,...,m
|λd0,r+d0,s−2ε
j |+ sup

D∈Ω(ε)
max

j=1,...,m

√
2| log(λj)λ

dr+ds
j |

)

≤ c(1 + log(N))Nd0,r+d0,s(λ
d0,r+d0,s−2ε
m 1{d0,r+d0,s−2ε≥0} + λ

d0,r+d0,s−2ε
1 1{d0,r+d0,s−2ε<0})

(B.50)

≤ c log(N) max{md0,r+d0,s−2εN2ε, N2ε}
≤ c log(N)m2∆2−2εN2ε =: L21. (B.51)

We pause here to draw the attention to inequality (B.50), since the argument will be used not only
here but also in the proofs of Proposition 3.2–3.4. It can be assumed that the frequencies satisfy
λj ≤ 1. Then, the function f(d) = λ2d

j is monotonically decreasing in d for all j = 1, . . . ,m. For a
non-negative exponent d > 0, f reaches its maximum for j = m, for a negative exponent d ≤ 0, for
j = 1. Due to the monotonicity of f , the function reaches its supremum for the smallest possible
values d can take.
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We proceed with the case d0,r > 0, d0,s > 0,

Lrs,i = cr,i,N c̃s,i,N

(
max

j=1,...,m
|λd0,r+d0,s−2ε
j |+ sup

D∈Ω(ε)
max

j=1,...,m

√
2| log(λj)λ

dr+ds
j |

)

≤ c(1 + log(N))cr,i,N c̃s,i,N (λ
d0,r+d0,s−2ε
m 1{d0,r+d0,s−2ε≥0} + λ

d0,r+d0,s−2ε
1 1{d0,r+d0,s−2ε<0})

≤ c log(N)





max{md0,r+d0,s−2εN2ε, N2ε}, if d0,r, d0,s >
1
4 , i = 2,

max{m 1
4

+d0,r+d0,s−2εN2ε,m
1
4N2ε}, if d0,r >

1
4 , d0,s ≤ 1

4 , i = 3,

m
1
2Nd0,r+d0,sλ

d0,r+d0,s−2ε
m , if d0,r, d0,s ≤ 1

4 , d0,r + d0,s − 2ε ≥ 0, i = 4,

m
1
2Nd0,r+d0,sλ

d0,r+d0,s−2ε
1 , if d0,r, d0,s ≤ 1

4 , d0,r + d0,s − 2ε < 0, i = 4,

≤ c log(N)





m2∆2−2εN2ε, if d0,r, d0,s >
1
4 , i = 2,

m
1
4

+∆2+d0,s−2εN2ε, if d0,r >
1
4 , d0,s ≤ 1

4 , i = 3,

m
1
2

+d0,r+d0,s−2εN2ε, if d0,r, d0,s ≤ 1
4 , d0,r + d0,s − 2ε ≥ 0, i = 4,

m
1
2N2ε, if d0,r, d0,s ≤ 1

4 , d0,r + d0,s − 2ε < 0, i = 4,

≤ c log(N) max{m2 s∆u−2εN2ε,m
1
2N2ε} =: L22 (B.52)

with s∆u as in (A.2). Since L21 and L22 do not depend on r, s, applying Lemma B.1 with i = 2, 3, 4,
gives (B.47) with k = 2.

Case d0,r > 0, d0,s ≤ 0: We get

Lrs,1 = Nd0,r

(
max

j=1,...,m
|λd0,r−ε+max{d0,s−ε,∆1}
j |+ sup

D∈Ω(ε)
max

j=1,...,m

√
2| log(λj)λ

dr+ds
j |

)

≤ Nd0,r max
j=1,...,m

|λd0,r−ε+max{d0,s−ε,∆1}
j |

+ c log(N)Nd0,r(λ
d0,r−ε+∆1
m 1{d0,r−ε+∆1≥0} + λ

d0,r−ε+∆1

1 1{d0,r−ε+∆1<0})

≤ c(1 + log(N))(m∆2+∆1−εN−∆1+ε1{d0,r−ε+∆1≥0} +N−∆1+ε1{d0,r−ε+∆1<0})

≤ c log(N) max{m∆2+∆1−ε, 1}N−∆1+ε =: L31 (B.53)

since ε < −∆1, and

Lrs,i = cr,i,N c̃s,i,N

(
max

j=1,...,m
|λd0,r−ε+max{d0,s−ε,∆1}
j |+ sup

D∈Ω(ε)
max

j=1,...,m

√
2| log(λj)λ

dr+ds
j |

)

≤ c(1 + log(N))cr,i,N c̃s,i,N (λ
d0,r−ε+∆1
m 1{d0,r−ε+∆1≥0} + λ

d0,r−ε+∆1

1 1{d0,r−ε+∆1<0})

≤ c log(N)

{
m

1
4Nd0,r max{md0,r+∆1−ε, 1}N−d0,r−∆1+ε, if d0,r >

1
4 , d0,s ≤ 0, i = 3,

m
1
2Nd0,r max{md0,r+∆1−ε, 1}N−d0,r−∆1+ε, if 1

4 ≥ d0,r > 0, d0,s ≤ 0, i = 4,

≤ c log(N)

{
max{m 1

4
+∆2+∆1−ε,m

1
4 }N−∆1+ε, if d0,r >

1
4 , d0,s ≤ 0, i = 3,

max{m 1
2

+d0,r+∆1−ε,m
1
2 }N−∆1+ε, if 1

4 ≥ d0,r > 0, d0,s ≤ 0, i = 4,

≤ c log(N) max{m 1
4

+ s∆u+∆1−ε,m
1
2 }N−∆1+ε =: L32. (B.54)

Applying Lemma B.1 with i = 3, 4 gives (B.47) with k = 3.
Deterministic part: Using Lemma B.2 with (B.45), we get

sup
D∈Ω(ε)

|EĜrs(D)− G̃rs(D)| ≤ cG,1
1

2π
λ2q−2ε
m + c

1

2πm

(
1 +

1

2ε

)
N2εQm = T1(ε), (B.55)
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where T1(ε) is in Table A.2 and the inequality can be obtained by bounding the two terms in (B.40)
given (B.45) as follows. The first summand in (B.40) can be bounded as

sup
D∈Ω(ε)

1

2πm

m∑

j=1

λdr+dsj λ
2q−d0,r−d0,s
j ≤ 1

2πm

m∑

j=1

λ2q−2ε
j ≤ 1

2π
λ2q−2ε
m

for q − ε > 0, and the second summand as

sup
D∈Ω(ε)

1

2πm

m∑

j=1

λdr+dsj j−1λ
−d0,r−d0,s
j ≤ 1

2πm

m∑

j=1

j−1λ−2ε
j

≤ 1

2πm

m∑

j=1

j−1−2ελ−2ε
1 ≤ 1

2πm

(
1 +

1

2ε

)
λ−2ε

1 .

Finally, we combine our results on the probabilistic and deterministic terms to obtain the
statement of the proposition. With our choice of ν in (3.14) and for any C ≥ 1, observe that, with
explanations given below,

P
(

sup
D∈Ω(ε)

|Ĝrs(D)− G̃rs(D)| > ν
)

≤ P
(

sup
D∈Ω(ε)

|Ĝrs(D)− E(Ĝrs(D))|+ sup
D∈Ω(ε)

|E(Ĝrs(D))− G̃rs(D)| > C|||G|||
√

log(p)

R1
+ T1(ε)

)

≤ P
(

sup
D∈Ω(ε)

|Ĝrs(D)− E(Ĝrs(D))| > C|||G|||
√

log(p)

R1

)
(B.56)

≤
3∑

k=1

P
(

sup
D∈Ω(ε)

|Ĝrs(D)− E(G̃rs(D))|1Ak > C|||G|||
√

log(p)

R1

)
(B.57)

≤
3∑

k=1

c1 exp

(
− c2C min

{
√

log(p)

log(N)−1
s∆−1
N R11

m

γ2
s∆NLk1

,

log(p)

log(N)−2
s∆−2
N R12

m2

γ4
s∆2
NL2

k2

})
(B.58)

≤ c1 exp

(
− c2C min

{
√

log(p)

log(N)−1
s∆−1
N R11

m

γ2
s∆N maxk=1,2,3 Lk1

,

log(p)

log(N)−2
s∆−2
N R12

m2

γ4
s∆2
N maxk=1,2,3 L2

k2

})

≤ c1 exp

(
− c2C min

{√
log(p)

s∆N log(N)
R11, log(p)

})
(B.59)

≤ c1p
−c2C (B.60)

with Lk1,Lk2, k = 1, 2, 3 defined in (B.48), (B.49), (B.51), (B.52) and (B.53), (B.54). The constants
c1, c2 are generic and might differ from line to line. Indeed, the inequality (B.56) is due to (B.55)
with T1(ε) as in Table A.2. In (B.57), the probabilistic part is bounded as in (B.46). Applying
(B.47) yields (B.58). For the inequality (B.59), note that R11 and R12 are chosen in Table A.1
such that

log(N)−1R11 - m( max
k=1,2,3

Lk1)−1 and log(N)−2R12 - m2( max
k=1,2,3

Lk2)−2.

The inequality (B.60) follows since we work under the assumption R11 % s∆N log(N) log(p); see the
discussion following Proposition 3.1.
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Proof of Proposition 3.2: To apply Lemmas B.1 and B.2, we choose

tj,r(d0,r) = λ
d0,r
j (B.61)

in (3.8)–(3.9). Here, we do not need a uniform bound. For this reason, it is not necessary to take
the supremum over all admissible estimates of D in Lemmas B.1 and B.2. In particular, Lemma
B.1 simplifies, since the derivatives in the respective bounds Lrr,i in (B.1) become zero with the
choice (B.61).

Probabilistic part: It is enough to distinguish two cases

P
(
|ĝr(d0,r)− E(ĝr(d0,r))| > |||G|||ν̃1

)
≤

2∑

k=1

P
(
|ĝr(d0,r)− E(ĝr(d0,r))|1Ak > |||G|||ν̃1

)
(B.62)

with A1 = {d0,r ≤ 0} and A2 = {d0,r > 0}. For both cases, we apply Lemma B.1 and bound the
respective quantities Lrr,i, i = 1, . . . , 5 in (B.1) that then yield the desired result. We will show
that, for k = 1, 2,

P
(
|ĝr(d0,r)− E(ĝr(d0,r))|1Ak > |||G|||ν̃1

)
≤ c1 exp

(
− c2 min

{
ν̃1m

γ2Lk1
,
ν̃2

1m
2

γ4L2
k2

})
. (B.63)

Case d0,r ≤ 0: We get

Lrr,1 = Nmax{2d0,r,0} max
j=1,...,m

λ
2d0,r
j ≤ cN−2∆1 =: L11,

Lrr,5 =
( m∑

j=1

λ
4d0,r
j

) 1
2 ≤

( m∑

j=1

λ4∆1
j

) 1
2

=: L12.
(B.64)

Then, applying Lemma B.1 with i = 5 gives (B.63) with k = 1.
Case d0,r > 0: We get

Lrr,1 = Nmax{2d0,r,0} max
j=1,...,m

λ
2d0,r
j ≤ cm2∆2 =: L21, (B.65)

Lrr,i = c2
r,1,Nλ

2d0,r
m

=

{
Nmax{2d0,r, 12}λ

2d0,r
m , if d0,r >

1
4 , i = 2,

m
1
2Nmax{2d0,r,0}λ

2d0,r
m , if d0,r ≤ 1

4 , i = 4,

≤ c
{
m2d0,r , if d0,r >

1
4 , i = 2,

m
1
2

+2d0,r , if d0,r ≤ 1
4 , i = 4,

≤ cm2 s∆u =: L22. (B.66)

Then, applying Lemma B.1 with i = 2 gives (B.63) with k = 2.
Deterministic part: Using Lemma B.2 with (B.61), we get

|E(ĝr(d0,r))− g0,r| ≤ cG,1
1

2π
λqm +

1

πm
log(m)Qm = T2, (B.67)

where T2 is in Table A.2 and the inequality can be obtained by bounding the two terms in (B.40)
given (B.61) as follows. The first summand in (B.40) can be bounded as

1

2πm

m∑

j=1

λ
2d0,r
j λ

2q−2d0,r
j =

1

2πm

m∑

j=1

λ2q
j ≤ 1

2π
λ2q
m ,

40



the second summand as

1

2πm

m∑

j=1

λ
2d0,r
j j−1λ

−2d0,r
j =

1

2πm

m∑

j=1

j−1 ≤ 1

2πm
(1 + log(m)) ≤ 1

πm
log(m).

Finally, we combine our results on the probabilistic and deterministic terms. With our choice
of ν1 in (3.15) and for any C ≥ 1, observe that, with explanations given below,

P
(
|ĝr(d0,r)− g0,r| > ν1

)

≤ P
(
|ĝr(d0,r)− E(ĝr(d0,r))|+ |E(ĝr(d0,r))− g0,r| > C|||G|||

√
log(p)

R2
+ T2

)

≤ P
(
|ĝr(d0,r)− E(ĝr(d0,r))| > C|||G|||

√
log(p)

R2

)
(B.68)

≤
2∑

k=1

P
(
|ĝr(d0,r)− E(ĝr(d0,r))|1Ak > C|||G|||

√
log(p)

R2

)
(B.69)

≤
2∑

k=1

c1 exp

(
− c2C min

{
√

log(p)
s∆−1
N R21

m

γ2
s∆NLk1

,

log(p)
s∆−2
N R22

m2

γ4
s∆2
NL2

k2

})
(B.70)

≤ c1 exp

(
− c2C min

{
√

log(p)
s∆−1
N R21

m

γ2
s∆N maxk=1,2 Lk1

,

log(p)
s∆−2
N R22

m2

γ4
s∆2
N maxk=1,2 L2

k2

})

≤ c1 exp

(
− c2C min

{√
log(p)

s∆N
R21, log(p)

})
(B.71)

≤ c1p
−c2C (B.72)

with Lk1,Lk2, k = 1, 2 defined in (B.64), (B.65) and (B.66). The constants c1, c2 are generic
and might differ from line to line. Indeed, the inequality (B.68) is due to (B.67). In (B.69), the
probabilistic part is bounded as in (B.62). Applying (B.63) yields (B.70). For the inequality (B.71),
note that R21 and R22 are chosen in Table A.1 such that

R21 - m(max
k=1,2

Lk1)−1 and R22 - m2(max
k=1,2

Lk2)−2.

The inequality (B.72) follows since we work under the assumption R21 % s∆N log(p); see the dis-
cussion following Proposition 3.2.

Proof of Proposition 3.3: To apply Lemma B.1, we choose

tj,r(d) =
( j
m

)d−d0,r
λ
d0,r
j =

( j
m

)d
λ
d0,r
m (B.73)

and

Ω = Θ1 =

{
{d | d0,r − 1

2 + ∆ ≤ d ≤ ∆2}, if d0,r ≥ ∆1 + 1
2 ,

{d | ∆1 ≤ d ≤ ∆2}, if d0,r < ∆1 + 1
2

in (3.8)–(3.9).
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Probabilistic part: It is enough to distinguish three cases

P
(

sup
dr∈Θ1

| 1
m

m∑

j=1

( j
m

)2dr−2d0,r
λ

2d0,r
j (IX,rr(λj)− E(IX,rr(λj)))| > |||G|||ν̃2

)

≤
3∑

k=1

P
(

sup
dr∈Θ1

| 1
m

m∑

j=1

( j
m

)2dr−2d0,r
λ

2d0,r
j (IX,rr(λj)− E(IX,rr(λj)))|1Ak > |||G|||ν̃2

) (B.74)

with

A1 = {d0,r ≥ ∆1 +
1

2
, d0,r −

1

2
+ ∆ > 0}, A2 = {d0,r ≥ ∆1 +

1

2
, d0,r −

1

2
+ ∆ ≤ 0},

A3 = {d0,r < ∆1 +
1

2
}.

For each case, we apply Lemma B.1 and bound the respective quantities Lrr,i, i = 1, . . . , 5 in (B.1)
that then yield the desired result. We will show that, for k = 1, 2, 3,

P
(

sup
dr∈Θ1

| 1
m

m∑

j=1

( j
m

)2dr−2d0,r
λ

2d0,r
j (IX,rr(λj)− E(IX,rr(λj)))|1Ak > |||G|||ν̃2

)

≤ c1 exp

(
− c2 min

{
ν̃2m

γ2Lk1
,
ν̃2

2m
2

γ4L2
k2

})
.

(B.75)

Case d0,r ≥ ∆1 + 1
2 and d0,r − 1

2 + ∆ > 0: We get

Lrr,1 = N2d0,r

(
max

j=1,...,m

( j
m

)2d0,r−1+2∆
λ

2d0,r
m + sup

dr∈Θ1

max
j=1,...,m

2| log
( j
m

)
|
( j
m

)2dr
λ

2d0,r
m

)

≤ c(1 + log(m)) max
j=1,...,m

( j
m

)2d0,r−1+2∆
m2d0,r

≤ c log(m)m2∆2 =: L11, (B.76)

Lrr,i = c2
r,i,N

(
max

j=1,...,m

( j
m

)2d0,r−1+2∆
λ

2d0,r
m + sup

dr∈Θ1

max
j=1,...,m

2| log
( j
m

)
|
( j
m

)2dr
λ

2d0,r
m

)

≤ c(1 + log(m))c2
r,i,N max

j=1,...,m

( j
m

)2d0,r−1+2∆
λ

2d0,r
m

= c log(m)

{
Nmax{2d0,r, 12}λ

2d0,r
m , if d0,r >

1
4 , i = 2,

Nmax{2d0,r,0}m
1
2λ

2d0,r
m , if d0,r ≤ 1

4 , i = 4,

≤ c log(m)m2 s∆u =: L12. (B.77)

Then, applying Lemma B.1 with i = 2 gives (B.75) with k = 1.
Case d0,r ≥ ∆1 + 1

2 and d0,r − 1
2 + ∆ ≤ 0: We get

Lrr,1 = N2d0,r

(
max

j=1,...,m

( j
m

)2d0,r−1+2∆
λ

2d0,r
m + sup

dr∈Θ1

max
j=1,...,m

2| log
( j
m

)
|
( j
m

)2dr
λ

2d0,r
m

)

≤ c(1 + log(m)) max
j=1,...,m

( j
m

)2d0,r−1+2∆
m2d0,r

≤ c log(m)m1−2∆ =: L21 (B.78)
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and

Lrr,2 = log(N)
1
2Nmax{2d0,r, 12}

(
max

j=1,...,m

( j
m

)2d0,r−1+2∆
λ

2d0,r
m + sup

dr∈Θ1

max
j=1,...,m

2| log
( j
m

)
|
( j
m

)2dr
λ

2d0,r
m

)

≤ c(1 + log(m))Nmax{2d0,r, 12} max
j=1,...,m

( j
m

)2d0,r−1+2∆
λ

2d0,r
m

≤ c log(m) max{m1−2∆, N
1
2m1−2∆N−2d0,r}

≤ c log(m) max{m1−2∆, N−
1
2
−2∆1m1−2∆} =: L22.

(B.79)
Then, applying Lemma B.1 with i = 2, 5 gives (B.75) with k = 2.

Case d0,r < ∆1 + 1
2 : In this case, Θ1 = {d | ∆1 ≤ d ≤ ∆2}.Then,

L1,rr = Nmax{2d0,r,0}
(

max
j=1,...,m

( j
m

)2∆1

λ
2d0,r
m + sup
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2| log
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m }

≤ c log(m) max{m2 s∆l,1−2∆1 , N−2∆1} =: L31 (B.80)

with s∆l,1 as in (A.2) and we distinguish further two cases: for d0,r > 0,

Lrr,i = c2
r,i,N

(
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( j
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λ
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m
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4 , i = 4,

≤ c log(m)m2 s∆l,2−2∆1 (B.81)

with s∆l,2 as in (A.2) and for d0,r ≤ 0,

Lrr,5 = Nmax{2d0,r,0}
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. (B.82)

Finally, given (B.81) and (B.82), we define

L32 := c log(m) max{m2 s∆l,2−2∆1 ,
( m∑

j=1

λ4∆1
j

) 1
2 }. (B.83)
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Then, applying Lemma B.1 gives (B.75) with k = 3.
Deterministic part: Using Lemma B.2 with (B.73), we get

sup
dr∈Θ1

| 1
m

m∑
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( j
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λ

2d0,r
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(B.84)

with ∆̃r = (d0,r− 1
2 +∆)1{d0,r≥∆1+ 1

2
}+∆11{d0,r<∆1+ 1

2
} and T3(∆̃r) is in Table A.2. The inequality

can be obtained by bounding the two terms in (B.40) given (B.73) as follows. The first summand
in (B.40) can be bounded as

sup
dr∈Θ1

1

2πm

m∑

j=1

( j
m

)2dr
λ

2d0,r
m λ

2q−2d0,r
j ≤ 1

2πm

m∑

j=1

( j
m

)2(∆̃r−d0,r)
λ2q
j

≤ λ2q
m

1

2πm

m∑

j=1

( j
m

)2(∆̃r−d0,r)

≤ λ2q
m

1

2π

1

2∆̃r − 2d0,r + 1

and the second as
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.

Finally, we combine our results on the probabilistic and deterministic terms to obtain the
statement of the proposition. With our choice of ν2 in (3.16), observe that, with explanations given
below,

P
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(B.85)

≤
3∑

k=1

P
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(B.86)
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≤
3∑

k=1

c1 exp

(
− c2C min

{
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s∆−1
N R31

m

γ2
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log(p)
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(B.87)

≤ c1 exp

(
− c2C min
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(
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(B.88)

≤ c1p
−c2C (B.89)

with Lk1,Lk2, k = 1, 2, 3 defined in (B.76), (B.77), (B.78), (B.79) and (B.80), (B.83). The constants
c1, c2 are generic and might differ from line to line. The inequality (B.85) is due to (B.84). In (B.86),
the probabilistic part is bounded as in (B.74). Applying (B.75) yields (B.87). For the inequality
(B.88), note that R31 and R32 are chosen in Table A.1 such that

log(m)−1R31 - m( max
k=1,2,3

Lk1)−1 and log(m)−2R32 - m2( max
k=1,2,3

Lk2)−2.

The inequality (B.89) follows since we work under the assumption R31 % s∆N log(m) log(p); see the
discussion following Proposition 3.3.

Proof of Proposition 3.4: To apply Lemmas B.1 and B.2, we choose

tj,r(d0,r) = |lj − 1| 12λd0,rj 1{d0,r≥∆1+ 1
2
} = |lj − 1| 12

(j
`

)d0,r
λ
d0,r
` 1{d0,r≥∆1+ 1

2
} (B.90)

in (3.8)–(3.9) with ` and lj as in (3.7). Here, we do not need a uniform bound. For this reason, it
is not necessary to take the supremum over all admissible estimates of D0 in Lemmas B.1 and B.2.
In particular, Lemma B.1 simplifies, since the derivatives in the respective bounds Lrr,i in (B.1)
become zero with the choice (B.90). Throughout the proof, we assume d0,r ≥ ∆1 + 1

2 .
Probabilistic part: Note that
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(B.91)
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Furthermore,
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Deterministic part: Using Lemma B.2 with (B.90), we get
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(B.93)

where T4 is in Table A.2 and the inequality can be obtained by bounding the two terms in (B.40)
given (B.90). as follows. For d0,r ≥ ∆1 + 1

2 , the first summand in (B.40) can be bounded as
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Finally, we combine our results on the probabilistic and deterministic terms to obtain the
statement of the proposition. With our choice of ν3 in (3.17) and for any C ≥ 1, observe that
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≤ exp
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− c2C min
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log(p)
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(B.95)

≤ c1 exp

(
− c2C min

{√
log(p)

s∆N
R41, log(p)
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(B.96)

≤ c1p
−c2C (B.97)

with L1,L2 defined in (B.91) and (B.92). The constants c1, c2 are generic and might differ from
line to line. The inequality (B.94) is due to (B.93). Applying Lemma B.1 yields (B.95). For
the inequality (B.96), note that R41 and R42 are chosen in Table A.1 such that R41 - mL−1

1 and
R42 - m2L−2

2 . The inequality (B.97) follows since we work under the assumption R41 % s∆N log(p);
see the discussion following Proposition 3.4.

Proof of Proposition 3.5: To prove the consistency result in (3.18), we use the inequalities on the
probability of {‖Ĝ(D̂) − G0‖max > δ} discussed in Section 3 and combine the concentration in-
equalities in Propositions 3.1–3.4. We have

P(‖Ĝ(D̂)−G0‖max > δ)

= P
(
{‖Ĝ(D̂)−G0‖max > δ} ∩

(
{‖D̂ −D0‖max ≤ ε} ∪ {‖D̂ −D0‖max > ε}

))

≤ P({‖Ĝ(D̂)− G̃(D̂)‖max > δ/2} ∩ {‖D̂ −D0‖max ≤ ε})

+ P
((
{‖G̃(D̂)−G0‖max > δ/2} ∩ {‖D̂ −D0‖max ≤ ε}

)
∪ {‖D̂ −D0‖max > ε}

)

≤ P({‖Ĝ(D̂)− G̃(D̂)‖max > δ/2} ∩ {‖D̂ −D0‖max ≤ ε}) + P(‖D̂ −D0‖max > η) (B.98)

≤
p∑

r,s=1

P( sup
D∈Ω(ε)

|Ĝrs(D)− G̃rs(D)| > δ/2) + P(‖D̂ −D0‖max > η) (B.99)

with η = min{ε, δ4(‖G0‖ log(N)λ−2ε
m L(−ε))−1}. The inequality (B.98) follows by Lemma C.6.

We proceed with bounding the second probability in (B.98) before we conclude with utilizing
Propositions 3.1–3.4 to get the statement of this proposition.

To find an upper bound on the second probability in (B.98), we follow the Robinson (1995b)
approach used to prove the classical consistency result in the univariate case. Thus, we write the
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set Θ = [∆1,∆2] as a union Θ = Θ1 ∪Θ2 with Θ1 as in (3.22) and Θ2 as in (3.23); see Remark 3.4.
Denote further Sr(d) = Rr(d)−Rr(d0,r) with Rr in (2.1). Then, with explanations given below,

P(|d̂r − d0,r| > η)

≤ P( inf
d∈Nc

η∩Θ1

Sr(d) < 0) + P( inf
d∈Θ2

Sr(d) < 0) (B.100)

≤ P(|ĝr(d0,r)− g0,r| >
1

8
η2V1(m)g0,r) + P( sup
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2d0,r
j IX(λj)− g0,r)|1{d0,r≥∆1+ 1

2
} > V2(m)g0,r), (B.101)

where Nη = {d | |d− d0,r| ≤ η} and N c
η denotes the complement of Nη. The inequality in (B.100)

follows from (3.2) in Robinson (1995b). Lemmas C.1 and C.5 give (B.101).
Finally, combining (B.99) and (B.101) and choosing δ and ε according to (3.19), we can infer

that there exist constants c1, c2 such that for any C ≥ 1,
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m
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2
} > ε2V2(m)g0,r), (B.102)

≤
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r,s=1

P( sup
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} > ν3) (B.103)

≤ c1p
2−c2C , (B.104)

where (B.102) follows by (B.101) and since ε ∈ (0, 1
2) is assumed. For (B.103), recall our choice of

δ = max{2ν, ε4‖G0‖ log(N)λ−2ε
m L(−ε)} in (3.19). Then, δ/2 in the first probability of (B.102) can

be bounded from below by ν. For the remaining three probabilities in (B.102), note that η satisfies

η = min{ε, δ
4

(‖G0‖ log(N)λ−2ε
m L(−ε))−1} ≥ ε,

since δ ≥ ε4‖G0‖ log(N)λ−2ε
m L(−ε). Note also that ε = maxi=1,2,3 ηi in (3.19) can be bounded from

below by η1, η2 or η3. Then, for example, the lower bound in the second probability in (B.102)
satisfies

1

8
η2V1(m)g0,r ≥

1

8
ε2V1(m)g0,r ≥

1

8
η2

1V1(m)g0,r ≥ ν1,

where the last inequality follows by our choice of η1 in (3.20). This implies the second term as a
bound in (B.103). The other two probabilities can be dealt with similarly. Furthermore, (B.104) is
a consequence of applying Propositions 3.1–3.4 to the individual probabilities in (B.103).
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Proof of Proposition 3.6: The key in proving Proposition 3.6 is finding a concentration inequality
on ‖Ĝ(D̂) − G0‖max. Such a concentration inequality is provided in Proposition 3.5. Then, it is
left to follow exactly the proof of Proposition 3.6 in Sun et al. (2018).

Proof of Proposition 3.7: The proof follows the ideas used in the proof of Theorem 1 in Rothman
et al. (2008). However, we need to modify their proof in order to achieve a non-asymptotic result.
With the objective function `ρ as in (2.3), let

Q(D̂, P ) = `ρ(D̂, P )− `ρ(D̂, P0)

= − 1

m

m∑
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log |λD̂j PλD̂j |+ tr(Ĝ(D̂)P ) + ρ‖P‖1,off

+
1

m
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log |λD̂j P0λ
D̂
j | − tr(Ĝ(D̂)P0)− ρ‖P0‖1,off

= tr(Ĝ(D̂)(P − P0))− (log |P | − log |P0|) + ρ(‖P‖1,off − ‖P0‖1,off )

and set Z(∆) = Q(D̂, P0 + ∆). We further define the set Rλ = {P = P ∗ | ‖P − P0‖F > λ}. Then,

P(‖P̂ρ(D̂)− P0‖F > λ) = P(P̂ρ(D̂) ∈ Rλ) ≤ P( inf
P∈Rλ

`ρ(D̂, P ) ≤ inf
P∈Rcλ

`ρ(D̂, P ))

= P( inf
P∈Rλ

`ρ(D̂, P )− `ρ(D̂, P0) ≤ inf
P∈Rcλ

`ρ(D̂, P )− `ρ(D̂, P0))

= P( inf
P∈Rλ

Q(D̂, P ) ≤ inf
P∈Rcλ

Q(D̂, P ))

≤ P( inf
P∈Rλ

Q(D̂, P ) ≤ 0) (B.105)

≤ P( inf
∆∈ΘN

Z(∆) ≤ 0), (B.106)

where (B.105) follows since P0 ∈ Rcλ and (B.106) with

ΘN = {∆ = ∆∗ | ‖∆‖F = λ} and λ =
16

k2

√
p+ s δ (B.107)

follows since Z(·) is a convex function. Then, it remains to prove that inf∆∈ΘN Z(∆) > 0 with high
probability.

From the objective function in (2.3) recall that the l1-norm ‖ · ‖1,off excludes the diagonal
elements and introduce its counterpart ‖ · ‖1,on. Analogously, we write ‖ · ‖F,off and ‖ · ‖F,on
for the Frobenius norm of the off and on diagonal elements of a matrix, respectively. Recall the
definition of the index set S in (2.10) and define further MS = (mrs1{(r,s)∈S})r,s=1,...,p for a matrix
M = (mrs)r,s=1,...,p and an index set S. Then, with further explanations given below,

Z(∆) = tr(Ĝ(D̂)∆)− (log |∆ + P0| − log |P0|) + ρ(‖∆ + P0‖1,off − ‖P0‖1,off )

= tr((Ĝ(D̂)−G0)∆) + vec(∆)′
∫ 1

0
(1− v)(P0 + v∆)−1 ⊗ (P0 + v∆)−1dv vec(∆)

+ ρ(‖∆ + P0‖1,off − ‖P0‖1,off ) (B.108)

≥ tr((Ĝ(D̂)−G0)∆) + ‖∆‖2F
1

8
k2 + ρ(‖∆ + P0‖1,off − ‖P0‖1,off ) (B.109)

≥ ‖∆‖2F
1

8
k2 − δ‖∆‖1 + ρ(‖∆ + P0‖1,off − ‖P0‖1,off ) (B.110)
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≥ ‖∆‖2F
1

8
k2 − δ‖∆‖1 + ρ(−‖∆S‖1,off + ‖∆Sc‖1,off ) (B.111)

≥ ‖∆‖2F
1

8
k2 − δ(‖∆‖1,on + ‖∆S‖1,off + ‖∆Sc‖1,off )

+ ρ(−‖∆S‖1,off + ‖∆Sc‖1,off )

≥ ‖∆‖2F,on
1

8
k2 − δ‖∆‖1,on + ‖∆‖2F,off

1

8
k2 − 2δ‖∆S‖1,off (B.112)

≥ ‖∆‖2F,on(
1

8
k2 − δ√p‖∆‖−1

F,on) + ‖∆‖2F,off (
1

8
k2 − 2δ

√
s‖∆‖−1

F,off ) (B.113)

≥ ‖∆‖2F,on(
1

8
k2 − 2δ

√
p+ s‖∆‖−1

F,on) + ‖∆‖2F,off (
1

8
k2 − 2δ

√
p+ s‖∆‖−1

F,off )

≥ ‖∆‖2F (
1

8
k2 −

√
2δ
√
p+ s‖∆‖−1

F ) > 0. (B.114)

The equality (B.108) follows by the Taylor expansion of the function f(t) = log |P0 + t∆|, which
gives

log |∆ + P0| − log |P0|

= tr(G0∆)− vec(∆)′
∫ 1

0
(1− v)(P0 + v∆)−1 ⊗ (P0 + v∆)−1dv vec(∆).

In (B.109), following Rothman et al. (2008), we further bound the integral part from below by its
minimal eigenvalue

λmin

(∫ 1

0
(1− v)(P0 + v∆)−1 ⊗ (P0 + v∆)−1dv

)

≥ 1

2
min

0≤v≤1
λ2

min(P0 + v∆)−1 ≥ 1

2
min
‖∆‖F≤λ

λ2
min(P0 + ∆)−1 ≥ 1

8
k2,

since, for ‖∆‖F ≤ λ,

λ2
min(P0 + ∆)−1 = λ−2

max(P0 + ∆) ≥ (‖P0‖+ ‖∆‖)−2 ≥ (‖P0‖+ ‖∆‖F )−2

≥ (‖P0‖+ λ)−2 ≥ (2‖P0‖)−2 =
1

4
λ2

min(G0) ≥ 1

4
k2,

since λ = 16
k2
√
p+ s ≤ ‖P0‖ by the assumption of Proposition 3.7. Applying Proposition 3.5 gives

inequality (B.110) with probability at least 1− c1p
2−c2C . The inequality (B.111) follows since

‖∆ + P0‖1,off − ‖P0‖1,off = ‖∆S + P0,S‖1,off + ‖∆Sc‖1,off − ‖P0‖1,off
≥ −‖∆S‖1,off + ‖∆Sc‖1,off .

Line (B.112) follows since ρ = δ. In (B.113), we used the Cauchy-Schwarz inequality to get
‖∆‖1,on ≤ √p‖∆‖F,on and ‖∆S‖1,off ≤

√
s‖∆‖F,off . Then, in (B.114) it remains to verify that the

expression is positive, which is a consequence of the choice of λ in (B.107).

Proof of Lemma 3.1: Lemma 3.1 is the analogue of Corollary 1 in Rothman et al. (2008). The
proof follows similar arguments as the proof of Proposition 3.7, aiming to use Proposition 3.5.

Recall that Γ0 = W−1
0 G0W

−1
0 and Γ̂(D̂) = Ŵ−1(D̂)Ĝ(D̂)Ŵ−1(D̂). The first step is to prove

an analogue of Proposition 3.5 in terms of the coherence matrix Γ0, that is,

P(‖Γ̂(D̂)− Γ0‖max > δ̃) ≤ c1p
2−c2C (B.115)
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with δ̃ = 3δmax
{

1, 1
k2

}
and δ as in Proposition 3.5. In order to prove (B.115), note that

‖Γ̂(D̂)− Γ0‖max = max
r,s=1,...,p

∣∣∣∣∣∣
Ĝrs(D̂)√

Ĝrr(D̂)Ĝss(D̂)
− G0,rs√

G0,rrG0,ss

∣∣∣∣∣∣

≤ max
r,s=1,...,p

∣∣∣∣∣∣
Ĝrs(D̂)√

Ĝrr(D̂)Ĝss(D̂)
− Ĝrs(D̂)√

G0,rrG0,ss

∣∣∣∣∣∣
+ max
r,s=1,...,p

∣∣∣∣∣
Ĝrs(D̂)−G0,rs√

G0,rrG0,ss

∣∣∣∣∣

≤ max
r,s=1,...,p

∣∣∣∣∣∣
1−

(
Ĝrr(D̂)Ĝss(D̂)

G0,rrG0,ss

) 1
2

∣∣∣∣∣∣
+ max
r,s=1,...,p

∣∣∣∣∣
Ĝrs(D̂)−G0,rs√

G0,rrG0,ss

∣∣∣∣∣

≤ max
r,s=1,...,p

∣∣∣∣∣1−
Ĝrr(D̂)Ĝss(D̂)

G0,rrG0,ss

∣∣∣∣∣+ δ
1

k
(B.116)

= max
r,s=1,...,p

(G0,rrG0,ss)
−1
∣∣∣Ĝrr(D̂)Ĝss(D̂)−G0,rrG0,ss

∣∣∣+ δ
1

k

≤ max
r,s=1,...,p

1

k2

∣∣∣(Ĝrr(D̂)−G0,rr +G0,rr)(Ĝss(D̂)−G0,ss +G0,ss)−G0,rrG0,ss

∣∣∣+ δ
1

k

≤ 1

k2 (‖Ĝ(D̂)−G0‖2max + 2 max
r=1,...,p

G0,rr‖Ĝ(D̂)−G0‖max) + δ
1

k

≤ δ2 1

k2 + 2δ
1

k
≤ 3δmax

{
1,

1

k2

}
, (B.117)

where (B.116) follows since

max
r,s=1,...,p

∣∣∣∣∣
Ĝrs(D̂)−G0,rs√

G0,rrG0,ss

∣∣∣∣∣ ≤ ‖W
−1
0 ‖2‖Ĝ(D̂)−G0‖max ≤ δ

1

k
(B.118)

with probability at least 1 − c1p
2−c2C by Proposition 3.5 and since ‖W−1

0 ‖ ≤ 1/λ
1
2
min(G0) ≤ 1/k

1
2

by Assumption 1. The inequality (B.117) is also due to Proposition 3.5. This concludes the proof
of (B.115).

Moving on to proving the actual statement of Lemma 3.1 we follow Rothman et al. (2008) and
Shu and Nan (2019). The proof requires a slight modification of the proof of Proposition 3.7. We
conduct the same steps but use the objective function `Γρ in (3.25); set ∆ = K̂ −K0 and replace
(B.107) by

ΘN = {∆ = ∆∗ | ‖∆‖F = λ} and λ = 48 max

{
1,

1

k4

}√
s δ. (B.119)

We omit all steps up to (B.109). Then,

Z(∆) ≥ tr((Γ̂(D̂)− Γ0)∆) + ‖∆‖2F
1

8
k2 + ρ(‖∆ +K0‖1,off − ‖K0‖1,off )

≥ ‖∆‖2F
1

8
k2 − δ̃‖∆‖1 + ρ(‖∆ +K0‖1,off − ‖K0‖1,off ) (B.120)

≥ ‖∆‖2F
1

8
k2 − δ̃‖∆‖1 + ρ(−‖∆S‖1,off + ‖∆Sc‖1,off ) (B.121)

≥ ‖∆‖2F
1

8
k2 − δ̃(‖∆‖1,on + ‖∆S‖1,off + ‖∆Sc‖1,off )
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+ ρ(−‖∆S‖1,off + ‖∆Sc‖1,off )

≥ ‖∆‖2F,on
1

8
k2 − δ̃‖∆‖1,on + ‖∆‖2F,off

1

8
k2 − 2δ̃‖∆S‖1,off (B.122)

≥ ‖∆‖2F,on(
1

8
k2 − δ̃√s‖∆‖−1

F,on) + ‖∆‖2F,off (
1

8
k2 − 2δ̃

√
s‖∆‖−1

F,off ) (B.123)

≥ ‖∆‖2F,on(
1

8
k2 − 2δ̃

√
s‖∆‖−1

F,on) + ‖∆‖2F,off (
1

8
k2 − 2δ̃

√
s‖∆‖−1

F,off )

≥ ‖∆‖2F (
1

8
k2 −

√
2δ̃
√

s‖∆‖−1
F ) > 0. (B.124)

Applying (B.115) gives inequality (B.120) with probability at least 1−c1p
2−c2C , and (B.121) follows

by the same arguments as (B.111). Line (B.122) follows since ρ = δ̃ = 3δmax
{

1, 1
k2

}
. In (B.123),

we used the Cauchy-Schwarz inequality to get ‖∆‖1,on ≤
√

s‖∆‖F,on and ‖∆S‖1,off ≤
√

s‖∆‖F,off .
Then, in (B.124) it remains to verify that the expression is positive, which is a consequence of the
choice of λ in (B.119).

Proof of Proposition 3.8: The modified graphical local Whittle estimator (3.26) requires a consis-
tency result for the estimator of W−1

0 which can be derived, with explanations given below, as
follows

‖Ŵ (D̂)−1 −W−1
0 ‖ = max

r=1,...,p

∣∣∣∣Ĝ
− 1

2
rr (D̂)−G−

1
2

0,rr

∣∣∣∣

= max
r=1,...,p

∣∣∣∣Ĝ
− 1

2
rr (D̂)−G−

1
2

0,rr

∣∣∣∣1{|Ĝ− 1
2

rr (D̂)−G
− 1

2
0,rr|≥1}

+ max
r=1,...,p

∣∣∣∣Ĝ
− 1

2
rr (D̂)−G−

1
2

0,rr

∣∣∣∣1{|Ĝ− 1
2

rr (D̂)−G
− 1

2
0,rr|<1}

≤ max
r=1,...,p

∣∣∣∣Ĝ
− 1

2
rr (D̂)−G−

1
2

0,rr

∣∣∣∣
2

+ max
r=1,...,p

∣∣∣∣Ĝ
− 1

2
rr (D̂)−G−

1
2

0,rr

∣∣∣∣1{|Ĝ− 1
2

rr (D̂)−G
− 1

2
0,rr|<1}

≤ max
r=1,...,p

∣∣∣∣∣
Ĝrr(D̂)−G0,rr

G0,rr

∣∣∣∣∣

2 ∣∣∣∣Ĝ
− 1

2
rr (D̂)

∣∣∣∣
2

+ max
r=1,...,p

∣∣∣∣∣
Ĝrr(D̂)−G0,rr

G0,rr

∣∣∣∣∣

∣∣∣∣Ĝ
− 1

2
rr (D̂)

∣∣∣∣1{|Ĝ− 1
2

rr (D̂)−G
− 1

2
0,rr|<1}

(B.125)

= max
r=1,...,p

∣∣∣∣∣
Ĝrr(D̂)−G0,rr

G0,rr

∣∣∣∣∣

2 ∣∣∣Ĝrr(D̂)−G0,rr +G0,rr

∣∣∣
−1

+ max
r=1,...,p

∣∣∣∣∣
Ĝrr(D̂)−G0,rr

G0,rr

∣∣∣∣∣

∣∣∣∣Ĝ
− 1

2
rr (D̂)

∣∣∣∣1{|Ĝ− 1
2

rr (D̂)−G
− 1

2
0,rr|<1}

≤ max
r=1,...,p

∣∣∣∣∣
Ĝrr(D̂)−G0,rr

G0,rr

∣∣∣∣∣

2 ∣∣∣Ĝrr(D̂)−G0,rr

∣∣∣
−1

+ max
r=1,...,p

∣∣∣∣∣∣
Ĝrr(D̂)−G0,rr

G
3
2
0,rr

∣∣∣∣∣∣

2

+ max
r=1,...,p

∣∣∣∣∣
Ĝrr(D̂)−G0,rr

G0,rr

∣∣∣∣∣

∣∣∣∣G
− 1

2
0,rr + 1

∣∣∣∣

≤
(

1

k2 +
1

k3

)
max
r=1,...,p

∣∣∣Ĝrr(D̂)−G0,rr

∣∣∣
2

+

(
1

k
3
2

+
1

k

)
max
r=1,...,p

∣∣∣Ĝrr(D̂)−G0,rr

∣∣∣ (B.126)

≤ δ4 max

{
1

k3 , 1

}
, (B.127)
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where (B.125) is due to

∣∣∣∣Ĝ
− 1

2
rr (D̂)−G−

1
2

0,rr

∣∣∣∣ =

∣∣∣∣∣1−
(
G0,rr

Ĝrr

)− 1
2

∣∣∣∣∣

∣∣∣∣Ĝ
− 1

2
rr (D̂)

∣∣∣∣ ≤
∣∣∣∣∣1−

(
G0,rr

Ĝrr

)− 1
2

∣∣∣∣∣

∣∣∣∣∣1 +

(
G0,rr

Ĝrr

)− 1
2

∣∣∣∣∣

∣∣∣∣Ĝ
− 1

2
rr (D̂)

∣∣∣∣

=

∣∣∣∣∣
Ĝrr(D̂)−G0,rr

G0,rr

∣∣∣∣∣

∣∣∣∣Ĝ
− 1

2
rr (D̂)

∣∣∣∣ ,

and (B.126) follows since λmin(G0) ≥ k by Assumption 1. Finally, (B.127) is an application of
Proposition 3.5. We can further infer

‖Ŵ (D̂)−1‖ ≤ ‖Ŵ (D̂)−1 −W−1
0 ‖+ ‖W−1

0 ‖ ≤ δ4 max

{
1

k3 , 1

}
+

1

k
1
2

≤ 5 max

{
1

k3 , 1

}
. (B.128)

Finally, with further details given below,

‖P̂Mρ (D̂)− P0‖
≤ ‖K̂(D̂)−K0‖F

(
‖Ŵ (D̂)−1 −W−1

0 ‖2 + ‖W−1
0 ‖‖Ŵ (D̂)−1‖

)

+ ‖Ŵ (D̂)−1 −W−1
0 ‖

((
‖K̂(D̂)−K0‖F + ‖K0‖

)
‖W−1

0 ‖+ ‖K0‖‖Ŵ (D̂)−1‖
)

(B.129)

≤ 48 max

{
1

k3 , 1

}√
s δ

(
16 max

{
1

k6 , 1

}
+ 5 max

{
1

k4 , 1

})

+ 4δmax

{
1

k3 , 1

}((
48 max

{
1

k3 , 1

}√
s δ + ‖K0‖

) 1

k
1
2

+ ‖K0‖5 max

{
1

k3 , 1

})
(B.130)

≤ 30 ∗ 48 max

{
1

k9 , 1

}
max{1, ‖K0‖}

√
s δ

with probability at least 1−c1p
2−c2C . The relation (B.129) is due to (S.52) in Shu and Nan (2019).

Then, combining Lemma 3.1, (B.127) and (B.128), we get (B.130).

Proof of Proposition 3.9: We follow the proof of Theorem 6 in Cai et al. (2011). Note that Theorem
6 in Cai et al. (2011) only requires that the maximum norm of the difference between covariance
matrix and its estimator is controlled. Given that our Proposition 3.5 provides an analogue result
in the spectral domain, namely

‖Ĝ(D̂)−G0‖max ≤ δ (B.131)

with probability at least 1− c1p
2−c2C , we will only provide some of the key steps in the proof and

otherwise refer to Theorem 6 in Cai et al. (2011). Following the proof of Theorem 6 in Cai et al.
(2011) up to the point where equation (13) is established, we get

‖Θ̂ρ − P0‖max ≤ 4δ‖P0‖1 (B.132)

by setting Σ0 = G0 and Ω0 = P0 in Cai et al. (2011). Then, one can further infer that

‖P̂Cρ (D̂)− P0‖ ≤ (1 + 21−a + 31−a)‖Θ̂ρ − P0‖1−amax‖P0‖aa (B.133)

≤ 6(4δ‖P0‖1)1−a‖P0‖aa, (B.134)

where (B.133) follows by (27) in Cai et al. (2011) and (B.134) by applying (B.132).
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Proof of Proposition 3.10: We prove (3.28) and (3.29) separately.
Proof of (3.28): By the definition of the thresholding operator (2.2), we get

{(r, s) | Tρ(Ĝrs(D̂)) 6= 0, G0,rs = 0} = {(r, s) | |Ĝrs(D̂)| ≥ ρ,G0,rs = 0}
⊆ {(r, s) | |Ĝrs(D̂)−G0,rs| ≥ ρ}.

Therefore,

P




d∑

r,s=1

1{Tρ(Ĝrs(D̂)) 6=0,G0,rs=0} > 0


 ≤ P

(
max

r,s=1,...,d
|Ĝrs(D̂)−G0,rs| > ρ

)
≤ c1p

2−c2C (B.135)

by Proposition 3.5.
Proof of (3.29): By the definition of the thresholding operator (2.2), we get

{(r, s) | Tρ(Ĝrs(D̂)) ≤ 0, G0,rs > 0 or Tρ(Ĝrs(D̂)) ≥ 0, G0,rs < 0}
⊆ {(r, s) | − Ĝrs(D̂) > ρ,G0,rs > τ or Ĝrs(D̂) > ρ,−G0,rs > τ}
⊆ {(r, s) | |Ĝrs(D̂)−G0,rs| > τ + ρ}.

Therefore,

P




d∑

r,s=1

1{Tρ(Ĝrs(D̂))≤0,G0,rs>0 or Tρ(Ĝrs(D̂))≥0,G0,rs<0} > 0




≤ P
(

max
r,s=1,...,d

|Ĝrs(D̂)−G0,rs| > τ + ρ

)
≤ c1p

2−c2C

by Proposition 3.5.

Proof of Proposition 3.11: We omit the proof and as it is similar to the proof of Proposition 3.10.

C Some technical results and their proofs

Section C.1 provides probabilistic bounds which are used to show that Lemmas B.1 and B.2 are
sufficient to prove a concentration inequality on the deviation between Ĝ(D̂) and the true G0.
Section C.2 gives some non-asymptotic results on the bias of the periodogram used to prove Lemma
B.2. Finally, Section C.3 concerns results on the matrix norms of the covariance matrix used to
prove Lemma B.1.

C.1 Probabilistic bounds

We prove here some probabilistic bounds used to show that the proof of Proposition 3.5 can be
reduced to proving Propositions 3.1–3.4. We continue using the notation of the proof of Proposition
3.5.

Lemma C.1. For η ∈ (0, 1
2), let Nη = {d | |d− d0,r| ≤ η} and Θ1 as in (3.22). Then,

P( inf
d∈Nc

η∩Θ1

Sr(d) < 0) ≤ P
(1

2
L(∆2 −∆1)g0,rη

2V1(m) < sup
d∈Θ1

|ĥr(d)− h̃r(d)|
)

+ P
(1

2
g0,rη

2V1(m) < |ĝr(d0,r)− g0,r|
)
,
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where Sr(d) = Rr(d)−Rr(d0,r) with Rr in (2.1), L(·) in (3.3), V1(m) in (3.21) and

ĥr(d) =
1

m

m∑

j=1

( j
m

)2d−2d0,r
λ

2d0,r
j IX,rr(λj), h̃r(d) =

1

m

m∑

j=1

( j
m

)2d−2d0,r
g0,r. (C.1)

Proof: Let S̃r(d) = R̃r(d)− R̃r(d0,r) with R̃r(d) = 1
m

∑m
j=1 log(λ−2d

j g̃r(d)) and g̃r(d) defined below
(3.2). Then,

P( inf
d∈Nc

η∩Θ1

Sr(d) < 0) ≤ P( inf
Nc
η∩Θ1

S̃r(d) < sup
d∈Θ1

|S̃r(d)− Sr(d)|)

≤ P(η2V1(m) < sup
d∈Θ1

|S̃r(d)− Sr(d)|) (C.2)

≤ P
(1

2
L(∆2 −∆1)g0,rη

2V1(m) < sup
d∈Θ1

|ĥr(d)− h̃r(d)|
)

+ P
(1

2
g0,rη

2V1(m) < |ĝr(d0,r)− g0,r|
)
, (C.3)

where (C.2) is proved in Lemma C.2 and (C.3) in Lemma C.4 which is applicable since η2V1(m) <
1
4V1(m) = 1

4
1
18(1− 1

m2 ) < 1.

Lemma C.2. For d ∈ N c
η ∩ Θ1, η ∈ (0, 1

2), the quantity S̃r(d) = R̃r(d) − R̃r(d0,r) can be bounded
from below as

S̃r(d) ≥ η2V1(m)

with

V1(m) =
1

3

1

m4

m∑

i,j=1

(i− j)2

satisfying V1(m) = 1
18(1− 1

m2 ) ∼ 1
18 as m→∞.

Proof: The expression S̃r(d) can be rewritten as

S̃r(d) =
1

m

m∑

j=1

log(λ−2d
j ) + log(g̃r(d))− 1

m

m∑

j=1

log(λ
−2d0,r
j )− log(g0,r)

= log
( 1

m

m∑

j=1

λ
2d−2d0,r
j

)
− 1

m

m∑

j=1

log(λ
2d−2d0,r
j )

= log
( 1

m

m∑

j=1

j2d−2d0,r
)
− 1

m

m∑

j=1

log(j2d−2d0,r) =: fm(d− d0,r).

By Lemma C.3 below, we know that

fm(d− d0,r) ≥ min{fm(−η), fm(η)}.

We further prove lower bounds for fm(η) and fm(−η). The proof is based on a result due to
Mercer (1999). For the readers’ convenience, we shortly repeat this result: Let J(x) be the smallest
closed interval that contains some xj , j = 1, . . . ,m and g1, g2 be two twice differentiable functions
on J(x) with continuous second derivatives g′′1 , g

′′
2 . Then,

g1

(
1
m

∑m
j=1 xj

)
− 1

m

∑m
j=1 g1(xi)

g2

(
1
m

∑m
j=1 xj

)
− 1

m

∑m
j=1 g2(xi)

=
g′′1(ξ)

g′′2(ξ)
for some ξ ∈ J(x), (C.4)
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given g′′2(ξ) 6= 0; see p. 678 in Mercer (1999)1. From here on, we consider fm(η) and fm(−η)
separately in order to find lower bounds.

Bounding fm(η): In (C.5) below, we apply (C.4) with (x1, . . . , xm) = (1, 22η, . . . ,m2η) and
g1(x) = log(x), g2(x) = x2. The second derivatives are respectively g′′1(x) = −x−2 and g′′2(x) = 2

such that
g′′1 (x)
g′′2 (x)

= −x−2

2 . Then, there is a ξ ∈ [1,m2η] such that

fm(η) = log
( 1

m

m∑

j=1

j2η
)
− 1

m

m∑

i=1

log(i2η)

= − 1

2ξ2

(( 1

m

m∑

j=1

j2η
)2
− 1

m

m∑

j=1

j4η
)

(C.5)

≥ 1

2m4η

( 1

m

m∑

j=1

j4η −
( 1

m

m∑

j=1

j2η
)2)

≥ 1

m4

m∑

i,j=1

(i− j)2η2, (C.6)

where the last inequality (C.6) is due to (C.10) and proved below.
Bounding fm(−η): In (C.7) below, we apply (C.4) with (x1, . . . , xm) = (1, 2−2η, . . . ,m−2η)

and g1(x) = log(x), g2(x) = x−2. The second derivatives are respectively g′′1(x) = −x−2 and

g′′2(x) = 6x−4 such that
g′′1 (x)
g′′2 (x)

= −x2

6 . Then, there is a ξ ∈ [m−2η, 1] such that

fm(−η) = log
( 1

m

m∑

j=1

j−2η
)
− 1

m

m∑

i=1

log(i−2η)

= −ξ
2

6

(( 1

m

m∑

j=1

j−2η
)−2
− 1

m

m∑

j=1

j4η
)

(C.7)

≥ m−4η

6

( 1

m

m∑

j=1

j4η −
( 1

m

m∑

j=1

j−2η
)−2)

≥ 1

6m4η

( 1

m

m∑

j=1

j4η −
( 1

m

m∑

j=1

j2η
)2)

(C.8)

≥ 1

3

1

m4

m∑

i,j=1

(i− j)2η2, (C.9)

where (C.8) is due to Jensen’s inequality and (C.9) is proved in (C.10) below.
For the inequality in (C.6) and (C.9), note that for d ∈ N c

η ∩Θ1 with η ∈ (0, 1
2),

1

m4η

( 1

m

m∑

j=1

j4η −
( 1

m

m∑

j=1

j2η
)2)

=
1

2m4η

1

m2

m∑

i,j=1

(i2η − j2η)2

=
1

2m4η

1

m2

m∑

i,j=1

((i− j)(2η)x2η−1
ij )2 (C.10)

1The relation (C.4) is also akin to Cauchy’s mean value theorem.
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≥ 2
1

m4

m∑

i,j=1

(i− j)2η2,

where xij ∈ (i, j) in (C.10) after applying the mean value theorem.

Lemma C.3. For d ∈ N c
η ∩Θ1, the following relation holds,

fm(d− d0,r) ≥ min{fm(−η), fm(η)}

with

fm(x) = log
( 1

m

m∑

j=1

j2x
)
− 1

m

m∑

j=1

log(j2x).

Proof: The first and second derivatives of the function fm are given by

∂

∂x
fm(x) =

( 1

m

m∑

j=1

j2x
)−1

2
1

m

m∑

j=1

log(j)j2x − 2
1

m

m∑

j=1

log(j),

∂2

∂x2
fm(x) = −

( 1

m

m∑

j=1

j2x
)−2(

2
1

m

m∑

j=1

log(j)j2x
)2

+
( 1

m

m∑

j=1

j2x
)−1

4
1

m

m∑

j=1

(log(j))2j2x.

Furthermore, the second derivative satisfies ∂2

∂x2
fm(x) > 0 for all x since

( 1

m

m∑

j=1

log(j)j2x
)2

<
1

m

m∑

j=1

(log(j))2j2x 1

m

m∑

j=1

j2x
(C.11)

using Cauchy-Schwarz inequality. The two sides in (C.11) cannot be equal since the vectors
(0, log(2)2x, . . . , log(m)mx) and (1, 2x, . . . ,mx) are linearly independent. The facts that fm is non-
negative (by Jensen’s inequality), is zero at x = 0 and has a positive second derivative prove our
claim.

Lemma C.4. For d ∈ Θ1 and all ν ∈ (0, 1), the inclusion

{|S̃r(d)− Sr(d)| > ν}

⊆
{
|ĥr(d)− h̃r(d)| > ν

1

2
L(∆2 −∆1)g0,r

}
∪
{
|ĝr(d0,r)− g0,r| > ν

1

2
g0,r

}

is satisfied with ĥr(d), h̃r(d) in (C.1) and L(·) in (3.3).

Proof: The distance between S̃r(d) and Sr(d) can be written as

|S̃r(d)− Sr(d)| =
∣∣∣ 1

m

m∑

j=1

log(λ−2d
j ) + log(g̃r(d))− 1

m

m∑

j=1

log(λ
−2d0,r
j )− log(g0,r)

−
( 1

m

m∑

j=1

log(λ−2d
j ) + log(ĝr(d))− 1

m

m∑

j=1

log(λ−2d0.r
j )− log(ĝr(d0,r))

)∣∣∣

= | log(g̃r(d))− log(g0,r)− log(ĝr(d)) + log(ĝr(d0,r))|
≤ | log(ĝr(d)(g̃r(d))−1)|+ | log(ĝr(d0,r)g

−1
0,r ))|. (C.12)
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We consider only | log(ĝr(d)(g̃r(d))−1)| in (C.12), since | log(ĝr(d0,r)g
−1
0,r )| can be treated analogously.

Then, with explanation given below,

{| log(ĝr(d)(g̃r(d))−1)| > ν}
= {| log(ĝr(d))− log(g̃r(d))| > ν}
= {log(ĝr(d))− log(g̃r(d)) > ν} ∪ {log(g̃r(d))− log(ĝr(d)) > ν}

⊆
{
ĝr(d)− g̃r(d)

g̃r(d)
> ν

}
∪
{
g̃r(d)− ĝr(d)

ĝr(d)
> ν

}
(C.13)

=

{
ĥr(d)− h̃r(d)

h̃r(d)
> ν

}
∪
{
h̃r(d)− ĥr(d)

ĥr(d)
> ν

}
(C.14)

⊆ {ĥr(d)− h̃r(d) > νL(∆2 −∆1)g0,r} ∪
(
{h̃r(d)− ĥr(d) > νĥr(d)}

∩
(
{ĥr(d) ≥ 1

2
L(∆2 −∆1)g0,r} ∪ {ĥr(d) <

1

2
L(∆2 −∆1)g0,r}

))
(C.15)

= {ĥr(d)− h̃r(d) > νL(∆2 −∆1)g0,r} ∪ {h̃r(d)− ĥr(d) >
1

2
νL(∆2 −∆1)g0,r}

∪
(
{h̃r(d)− ĥr(d) ≥ νĥr(d)} ∩ {ĥr(d) <

1

2
L(∆2 −∆1)g0,r}

))

⊆ {ĥr(d)− h̃r(d) > νL(∆2 −∆1)g0,r} ∪ {h̃r(d)− ĥr(d) >
1

2
νL(∆2 −∆1)g0,r}

∪ {h̃r(d) <
1

2
L(∆2 −∆1)g0,r + h̃r(d)− ĥr(d)}

⊆ {|ĥr(d)− h̃r(d)| > ν
1

2
L(∆2 −∆1)g0,r} ∪ {|ĥr(d)− h̃r(d)| > 1

2
L(∆2 −∆1)g0,r}

⊆ {|ĥr(d)− h̃r(d)| > ν
1

2
L(∆2 −∆1)g0,r},

where (C.13) follows by the mean value theorem. The equality in (C.14) can be seen by the

definitions of ĥr and h̃r in (C.1) and noting that λ
2d−2d0,r
m ĥr(d) = ĝr(d) and λ

2d−2d0,r
m h̃r(d) = g̃r(d),

The relation (C.15) is a consequence of the lower bound

h̃r(d) =
1

m

m∑

j=1

( j
m

)2d−2d0,r
g0.r ≥

1

m

m∑

j=1

( j
m

)2(∆2−∆1)
g0,r ≥

∫ 1

0
x2(∆2−∆1)dxg0,r =: L(∆2−∆1)g0,r

since x2d is monotonically increasing.

Lemma C.5. The second probability in (B.100) can be bounded as

P( inf
d∈Θ2

Sr(d) < 0) ≤ P
(∣∣∣ 1

m

m∑

j=1

(lj−1)
((j

`

)2d0,r
IX,rr(λj)−g0,r

)∣∣∣1{d0,r≥∆1+ 1
2
} > g0,rV2(m)

)
(C.16)

with lj and ` as in (3.7) and

V2(m) =
1

m

m∑

j=1

(lj − 1),

satisfying V2(m) > 0.
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Proof: The proof of relation (C.16) is part of the proof of Theorem 1 in Robinson (1995b). More
precisely, one can infer the inequality (C.16) from equation (3.21) in Robinson (1995b). For com-
pleteness, we sketch the proof. Recall the definitions of ` and lj given in (3.7). Then,

P( inf
d∈Θ2

Sr(d) < 0)

≤ P
( 1

m

m∑

j=1

(lj − 1)j2d0,rIX,rr(λj)1{d0,r≥∆1+ 1
2
} > 0

)
(C.17)

≤ P
(∣∣∣ 1

m

m∑

j=1

(lj − 1)
((j

`

)2d0,r
IX,rr(λj)− g0,r

)∣∣∣1{d0,r≥∆1+ 1
2
} >

1

m

m∑

j=1

(lj − 1)g0,r

)
, (C.18)

where (C.17) is due to (3.21) in Robinson (1995b) and (C.18) results from division with `2d0,r and
subtracting 1

m

∑m
j=1(lj − 1)g0,r on both sides in (C.17). Finally, V2(m) > 0 is proved in Lemma

C.7.

Lemma C.6. Given ‖D̂−D0‖max ≤ ε, the population quantity (3.2) evaluated at D̂ can be bounded
in terms of D̂ by

‖G̃(D̂)−G0‖max ≤ 2‖D̂ −D0‖max‖G0‖ log(N)λ−2ε
m L(−ε),

where L(·) is defined in (3.3).

Proof: Note that d̂r − d0,r ∈ [−ε, ε] for all r = 1, . . . , p. Then,

‖G̃(D̂)−G0‖max = max
r,s=1,...,p

∣∣∣ 1

m

m∑

j=1

(λ
(d̂r−d0,r)+(d̂s−d0,s)
j − 1)G0,rs

∣∣∣

≤ 2 max
r=1,...,p

|d̂r − d0,r|‖G0‖
1

m

m∑

j=1

| log(λj)|λ−2ε
j (C.19)

≤ 2‖D̂ −D0‖max‖G0‖ log(N)λ−2ε
m

1

m

m∑

j=1

( j
m

)−2ε

≤ 2‖D̂ −D0‖max‖G0‖ log(N)λ−2ε
m

∫ 1

0
x−2εdx. (C.20)

The relation (C.19) is a consequence of applying the mean value theorem while (C.20) follows since
x−2ε is monotonically decreasing.

Lemma C.7. The quantity V2(m) in (3.21) satisfies V2(m) > 0.

Proof: Recall V2(m) in (3.21) and note that, with lj as in (3.7), it can be written as

V2(m) =
1

m

m∑

j=1

(lj − 1) =
1

m

∑̀

j=1

((j
`

)2(− 1
2

+∆)
− 1
)

+
1

m

m∑

j=`+1

((j
`

)2(∆1−d0,r) − 1
)
. (C.21)

We will prove that both summands are positive. The first one satisfies

1

m

∑̀

j=1

((j
`

)2(− 1
2

+∆)
− 1
)
> 0 if

1

`

∑̀

j=1

j2(− 1
2

+∆) − `2(− 1
2

+∆) > 0.
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Set α = 2(−1
2 + ∆) and note that α < 0. Then,

1

`

∑̀

j=1

jα − `α ≥ 1

`

∑̀

j=1

jα −
(1

`

∑̀

j=1

j
)α

(C.22)

=
α(α− 1)ξα−2

2

(1

`

∑̀

j=1

j2 −
(1

`

∑̀

j=1

j
)2)

(C.23)

≥ α(α− 1)`α−2

4

1

`2

∑̀

i,j=1

(i− j)2 > 0,

where (C.22) follows since ` ≥ `+1
2 and (C.23) is due to the result stated in (C.4) with g1(x) = xα,

g2(x) = x2 and ξ ∈ [1, `]. The second summand in (C.21) satisfies

1

m

m∑

j=`+1

((j
`

)2(∆1−d0,r) − 1
)
> 0 if

1

m− `
m∑

j=`+1

j2(∆1−d0,r) − `2(∆1−d0,r) > 0.

Set β = 2(∆1 − d0,r) and note that β < 0. Then,

1

m− `
m∑

j=`+1

jβ − `β ≥ 1

m− `
m∑

j=`+1

jβ −
( 1

m− `
m∑

j=`+1

j
)β

(C.24)

=
α(β − 1)ξβ−2

2

( 1

m− `
m∑

j=`+1

j2 −
( 1

m− `
m∑

j=`+1

j
)2)

(C.25)

≥ β(β − 1)mβ−2

4

1

(m− `)2

m∑

j=`+1

(i− j)2 > 0,

where (C.24) follows since 3` > m+ 1 which can be shown by induction principal. The inequality
(C.25) follows by applying (C.4) with g1(x) = xβ, g2(x) = x2 and ξ ∈ [`+ 1,m].

C.2 Bound for periodogram bias

We prove here the results used in the proof of Lemma B.2.

Lemma C.8. Suppose Assumptions 1 and 3. Then,

∣∣∣frs(λj)− E(IX,rs(λj))
∣∣∣ ≤ N−1λ

−1−d0,r−d0,s
j

(
|||G||| 72(cos(λm/2))−2

π(1 + 2 min{∆1,−∆2})
+ cG,24(2 + log(m))

)
.

Proof: In order to bound the bias of the periodogram, we follow the ideas in the proof of Theorem 2
in Robinson (1995a). We adapt its arguments of asymptotic nature to find non-asymptotic bounds
which still ensure that the bias is negligible.

The bias term of the periodogram can be written as

∣∣∣frs(λj)− E(IX,rs(λj))
∣∣∣ =

∣∣∣
∫ π

−π

(
frs(λ)− frs(λj)

)
KN (λ− λj)dλ

∣∣∣, (C.26)

where

KN (λ) =
1

2πN

(
sin(Nλ/2)

sin(λ/2)

)2
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is the Fejér kernel (see equation (4.3) in Robinson (1995a)). The Fejér kernel can be expressed in
terms of the Dirichlet kernel as

KN (λ) =
1

2πN
|DN (λ)|2 with DN (λ) =

N∑

n=1

einλ =
sin(Nλ/2)

sin(λ/2)
, (C.27)

which satisfies
|DN (λ)| ≤ 2|λ|−1 for λ ∈ (−π, π)\{0}; (C.28)

see equation (4.7) in Robinson (1995a).
In the following analysis, we focus on the integral in (C.26) and separate the integration range

as follows ∫ π

−π
=

∫ −λj
2

−π
+

∫ λj
2

−
λj
2

+

∫ 2λj

λj
2

+

∫ π

2λj

. (C.29)

Note that the positive range of (−π, π) is separated into one more interval than the negative range.

The additional interval (
λj
2 , 2λj ] takes care of a potentially zero argument in KN . Handling the

intervals on the right-hand side of (C.29) from left to right, we get

∣∣∣
∫ −λj

2

−π

(
frs(λ)− frs(λj)

)
KN (λ− λj)dλ

∣∣∣

≤
∫ π

λj
2

(
|frs(λ)|+ |frs(λj)|

)
KN (λ+ λj)dλ

≤ |||G|||
∫ π

λj
2

(
λ−d0,r−d0,s + λ

−d0,r−d0,s
j

)
KN (λ+ λj)dλ

= |||G||| 1

2πN

(∫ π

λj
2

λ−d0,r−d0,s |DN (λ+ λj)|2dλ+ λ
−d0,r−d0,s
j

∫ π

λj
2

|DN (λ+ λj)|2dλ
)

≤ 1

2π
|||G|||N−1λ

−1−d0,r−d0,s
j (cos(λm/2))−2

(
16

1

1 + 2∆1
+ 8

)
, (C.30)

where (C.30) follows by Lemmas C.9 and C.10.
The integral centered around zero can be handled as

∣∣∣
∫ λj

2

−
λj
2

(
frs(λ)− frs(λj)

)
KN (λ− λj)dλ

∣∣∣

≤ max
|λ|≤λj/2

KN (λ− λj)
∫ λj

2

−
λj
2

∣∣∣frs(λ)− frs(λj)
∣∣∣dλ

≤ max
|λ|≤λj/2

1

2πN
4|λ− λj |−2

∫ λj
2

−
λj
2

(
|frs(λ)|+ |frs(λj)|

)
dλ (C.31)

≤ 16

2πN
|λj |−2|||G|||

(∫ λj
2

−
λj
2

|λ|−d0,r−d0,sdλ+ λ
1−d0,r−d0,s
j

)

≤ 16

2π
|||G|||N−1λ

−1−d0,r−d0,s
j

(
4

1

1− 2∆2
+ 1

)
, (C.32)

where (C.31) follows by applying (C.27)–(C.28).
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For the next integral, applying the mean value theorem gives

∣∣∣
∫ 2λj

λj
2

(
frs(λ)− frs(λj)

)
KN (λ− λj)dλ

∣∣∣

≤ max
λj
2
<λ≤2λj

∣∣∣∣
∂

∂λ
frs(λ)

∣∣∣∣
∫ 2λj

λj
2

|λ− λj |KN (λ− λj)dλ

≤ cG,2λ
−1−d0,r−d0,s
j

∫ 2λj

λj
2

|λ− λj |
1

2πN
|DN (λ− λj)|2dλ (C.33)

≤ cG,2λ
−1−d0,r−d0,s
j

1

πN

∫ 2λj

λj
2

|DN (λ− λj)|dλ

≤ cG,2λ
−1−d0,r−d0,s
j

1

πN
(4(π + 2) + 4 log(j)) (C.34)

≤ cG,2λ
−1−d0,r−d0,s
j N−14(2 + log(j)), (C.35)

where (C.33) is a consequence of Assumption 3 and (C.34) follows by Lemma D.3.
The remaining integral can be bounded as

∣∣∣
∫ π

2λj

(
frs(λ)− frs(λj)

)
KN (λ− λj)dλ

∣∣∣

≤
∫ π

2λj

(
|frs(λ)|+ |frs(λj)|

)
KN (λ− λj)dλ

≤ |||G|||
∫ π

2λj

(
λ−d0,r−d0,s + λ

−d0,r−d0,s
j

)
KN (λ− λj)dλ

=
1

2πN
|||G|||

(∫ π

2λj

λ−d0,r−d0,s |DN (λ− λj)|2dλ+ λ
−d0,r−d0,s
j

∫ π

2λj

|DN (λ− λj)|2dλ
)

≤ 1

2π
|||G|||N−1λ

−1−d0,r−d0,s
j

(
16

1

1 + 2∆1
+ 8

)
, (C.36)

where (C.36) follows by Lemmas C.9 and C.10.
Finally, using the integral representation (C.26) and combining the inequalities (C.30), (C.32),

(C.35) and (C.36) for the individual integrals in (C.29) gives

∣∣∣
∫ π

−π

(
frs(λ)− frs(λj)

)
KN (λ− λj)dλ

∣∣∣

≤ 1

2π
|||G|||N−1λ

−1−d0,r−d0,s
j (cos(λm/2))−2

(
16

1

1 + 2∆1
+ 8

)

+
16

2π
|||G|||N−1λ

−1−d0,r−d0,s
j

(
4

1

1− 2∆2
+ 1

)

+ cG,2N
−1λ

−1−d0,r−d0,s
j 4(2 + log(j)) +

1

2π
|||G|||N−1λ

−1−d0,r−d0,s
j

(
16

1

1 + 2∆1
+ 8

)

≤ 1

π
|||G|||N−1λ

−1−d0,r−d0,s
j

(
((cos(λm/2))−2 + 1)

(
8

1

1 + 2∆1
+ 4

)
+ 4

(
8

1

1− 2∆2
+ 2

))

+ cG,2N
−1λ

−1−d0,r−d0,s
j 4(2 + log(j))

≤ 1

π
|||G|||N−1λ

−1−d0,r−d0,s
j

(
(cos(λm/2))−224

1

1 + 2∆1
+ 48

1

1− 2∆2

)
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+ cG,2N
−1λ

−1−d0,r−d0,s
j 4(2 + log(j))

≤ 1

π
|||G|||N−1λ

−1−d0,r−d0,s
j ((cos(λm/2))−2 + 2)24

1

1 + 2 min{∆1,−∆2}
+ cG,2N

−1λ
−1−d0,r−d0,s
j 4(2 + log(j))

≤ N−1λ
−1−d0,r−d0,s
j

(
|||G||| 72(cos(λm/2))−2

π(1 + 2 min{∆1,−∆2})
+ cG,24(2 + log(m))

)
.

Lemma C.9. With the Dirichlet kernel defined in (C.27),
∫ π

λj
2

λ−d0,r−d0,s |DN (λ+ λj)|2dλ ≤ 16
1

1 + 2∆1
λ
−1−d0,r−d0,s
j (cos(λm/2))−2, (C.37)

∫ π

2λj

λ−d0,r−d0,s |DN (λ− λj)|2dλ ≤ 16
1

1 + 2∆1
λ
−1−d0,r−d0,s
j . (C.38)

Proof: We prove the inequalities (C.37) and (C.38) separately. For (C.37),

∫ π

λj
2

λ−d0,r−d0,s |DN (λ+ λj)|2dλ =

∫ π

λj
2

λ−d0,r−d0,s |DN (λ)|2
( |DN (λ+ λj)|
|DN (λ)|

)2

dλ

= sup
λj
2
≤λ≤π

( |DN (λ+ λj)|
|DN (λ)|

)2 ∫ π

λj
2

λ−d0,r−d0,s |DN (λ)|2dλ

≤ (cos(λm/2))−2

∫ π

λj
2

λ−d0,r−d0,s |DN (λ)|2dλ (C.39)

≤ 4(cos(λm/2))−2

∫ ∞
λj
2

λ−2−d0,r−d0,sdλ (C.40)

≤ 4(cos(λm/2))−2 1

1 + 2∆1
21+d0,r+d0,sλ

−1−d0,r−d0,s
j

≤ 16(cos(λm/2))−2 1

1 + 2∆1
λ
−1−d0,r−d0,s
j ,

where (C.39) is proved in Lemma D.4 and (C.40) follows by (C.28). Similarly,

∫ π

2λj

λ−d0,r−d0,s |DN (λ− λj)|2dλ =

∫ π

2λj

λ−d0,r−d0,s |DN (λ)|2
( |DN (λ− λj)|
|DN (λ)|

)2

dλ

≤ sup
2λj≤λ≤π

( |DN (λ− λj)|
|DN (λ)|

)2 ∫ π

2λj

λ−d0,r−d0,s |DN (λ)|2dλ

≤ 4

∫ π

2λj

λ−d0,r−d0,s |DN (λ)|2dλ (C.41)

≤ 16

∫ ∞

2λj

λ−2−d0,r−d0,sdλ (C.42)

≤ 16
1

1 + 2∆1
2−1−d0,r−d0,sλ

−1−d0,r−d0,s
j

≤ 16
1

1 + 2∆1
λ
−1−d0,r−d0,s
j ,

where (C.41) is proved in Lemma D.4 and (C.42) follows by (C.28).
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Lemma C.10. With the Dirichlet kernel defined in (C.27),
∫ π

λj
2

|DN (λ+ λj)|2dλ ≤ 8λ−1
j (cos(λm/2))−2 and

∫ π

2λj

|DN (λ− λj)|2dλ ≤ 8λ−1
j . (C.43)

Proof: The first integral in (C.43) can be bounded as

∫ π

λj
2

|DN (λ+ λj)|2dλ =

∫ π

λj
2

|DN (λ)|2
( |DN (λ+ λj)|
|DN (λ)|

)2

dλ

≤ sup
λj
2
≤λ≤π

( |DN (λ+ λj)|
|DN (λ)|

)2 ∫ π

λj
2

|DN (λ)|2dλ

≤ (cos(λm/2))−2

∫ π

λj
2

|DN (λ)|2dλ (C.44)

≤ 4(cos(λm/2))−2

∫ ∞
λj
2

|λ|−2dλ ≤ 8(cos(λm/2))−2|λj |−1, (C.45)

where (C.44) is proved in Lemma D.4 and the inequality (C.45) follows by (C.28). Similarly,

∫ π

2λj

|DN (λ− λj)|2dλ =

∫ π

2λj

|DN (λ)|2
( |DN (λ− λj)|
|DN (λ)|

)2

dλ

≤ sup
2λj≤λ≤π

( |DN (λ− λj)|
|DN (λ)|

)2 ∫ π

2λj

|DN (λ)|2dλ (C.46)

≤ 4

∫ π

2λj

|DN (λ)|2dλ

≤ 16

∫ ∞

2λj

|λ|−2dλ ≤ 8|λj |−1, (C.47)

where (C.46) is proved in Lemma D.4 and the inequality (C.47) follows by (C.28).

C.3 Bounds on covariance matrices norms

This section collects our results with bounds on different matrix norms of the covariance matrix
and their proofs.

Lemma C.11. Let Σrr = (Σrr(n − k))n,k=1,...,N = E(X er(X er)′) and d0,r ∈ [∆1,∆2] in (1.1).
Then, there exist constants c1, c2 such that the spectral and Frobenius norms of Σrr can be bounded
as

‖Σrr‖ ≤ c1|||G|||Nmax{2d0,r,0}
s∆N ,

‖Σrr‖F ≤ c2|||G|||Nmax{2d0,r, 12} s∆N

with s∆N as in (3.13).

Proof: The bounds follow from Lemmas C.12 and C.13 below.

Lemma C.12. Let Σrr = (Σrr(n−k))n,k=1,...,N = E(X er(X er)′) and d0,r ≤ 0 in (1.1). Then, there
exists a constant c such that the spectral and Frobenius norms of Σrr can be bounded as

‖Σrr‖ ≤ c|||G|||, (C.48)

‖Σrr‖F ≤ c|||G|||N
1
2 . (C.49)
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Proof: See Lemma C.5. in Sun et al. (2018) for the inequality (C.48). The second inequality (C.49)
is a simple consequence of using the fact that ‖A‖F ≤

√
rk(A)‖A‖ for a matrix A and applying

(C.48).

Lemma C.13. Let Σrr = (Σrr(n−k))n,k=1,...,N = E(X er(X er)′) and d0,r > 0 in (1.1). Then, there
exist constants c1, c2 such that the spectral and Frobenius norms of Σrr can be bounded as

‖Σrr‖ ≤ c1|||G|||N2d0,r log(N), (C.50)

‖Σrr‖F ≤ c2|||G|||
{
N

1
2 log(N)

1
2 , if d0,r ≤ 1

4 ,

N2d0,r log(N)
1
2 , if d0,r >

1
4 .

(C.51)

Remark C.1. We pause here to comment on Lemma C.13. In the light of asymptotic results on
the autocovariances under long-range dependence, it might be surprising to the reader to find the
logarithm in all our bounds opposed to only in the case d0,r = 1

4 . This could certainly be avoided by
bounding certain sums in our proofs by integrals depending on the memory parameter d0,r. Then,
one can replace the logarithm respectively by 1

d0,r
for the bound in (C.50) and 1√

4d0,r−1
1{d0,r 6= 1

4
}

in (C.51). However, the memory parameter d0,r approaching either zero or 1
4 results in potentially

high constants. In contrast, the logarithm can be controlled in our high probability bounds.

Proof of Lemma C.13: The autocovariance matrix Σrr = (Σrr(n − k))n,k=1,...,N of the component
series {Xr,n}n∈Z can be represented in terms of the spectral density frr(ω) of the respective com-
ponent series as

Σrr =
1

2π

∫ π

−π
frr(ω)(ei(n−k)ω)n,k=1,...,Ndω

=
1

2π

∫ π

−π
|ω|−2d0,rGrr(ω)(ei(n−k)ω)n,k=1,...,Ndω.

(C.52)

In the following, we prove the statements for the spectral and the Frobenius norm separately.
Spectral norm: Using (C.52), we can bound the spectral norm of Σrr as

‖Σrr‖ ≤ ess sup
ω∈(−π,π)

|Grr(ω)|
∥∥∥∥

1

2π

∫ π

−π
|ω|−2d0,r(ei(n−k)ω)n,k=1,...,Ndω

∥∥∥∥ (C.53)

≤ |||G|||
∥∥∥∥

1

2π

∫ π

−π
| exp(iω)− 1|−2d0,r(ei(n−k)ω)n,k=1,...,Ndω

∥∥∥∥ , (C.54)

where (C.53) follows since (ei(n−k)ω)n,k=1,...,N is positive semidefinite and because of |eix−eiy| ≤ |x−
y|. In order to bound the spectral norm in (C.54), we replace the matrix by an integral operator with
piecewise constant kernel. More specifically, define the integral operator Kk : L2(0, 1) → L2(0, 1)
as

(Kkg)(x) =

∫ 1

0
g(y)kN (x, y)dy (C.55)

with kernel function

kN (x, y) =
1

2π

∫ π

−π
|eiω − 1|−2d0,rei([Nx]−[Ny])ωdω.

Then,

∥∥∥∥
1

2π

∫ π

−π
|eiω − 1|−2d0,r(ei(n−k)ω)n,k=1,...,Ndω

∥∥∥∥ = N‖Kk‖op ≤ cN2d0,r log(N); (C.56)
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see Lemma 4.1 in Böttcher and Dörfler (2010) for the equality in (C.56). The inequality stated in
(C.56) is proved in Lemma C.14. Combining (C.54) and (C.56) yields (C.50).

Frobenius norm: We deal with the Frobenius norm similarly as with the spectral norm as

‖Σrr‖F =
( 1

(2π)2

∫ π

−π

∫ π

−π
Grr(ω1)Grr(ω2)|ω1ω2|−2d0,r

N∑

n,k=1

ei(n−k)(ω1−ω2)dω1dω2

) 1
2

=
( 1

(2π)2

∫ π

−π

∫ π

−π
Grr(ω1)Grr(ω2)|ω1ω2|−2d0,r |

N∑

n=1

ein(ω1−ω2)|2dω1dω2

) 1
2

≤ ess sup
ω∈(−π,π)

|Grr(ω)|
( 1

(2π)2

∫ π

−π

∫ π

−π
|ω1ω2|−2d0,r |

N∑

n=1

ein(ω1−ω2)|2dω1dω2

) 1
2

≤ |||G|||
( 1

(2π)2

∫ π

−π

∫ π

−π
| exp(iω1)− 1|−2d0,r | exp(iω2)− 1|−2d0,r |

N∑

n=1

ein(ω1−ω2)|2dω1dω2

) 1
2

(C.57)

= |||G|||
∥∥∥∥

1

2π

∫ π

−π
| exp(iω)− 1|−2d0,r(ei(n−k)ω)n,k=1,...,Ndω

∥∥∥∥
F

, (C.58)

where (C.57) follows since |eix− eiy| ≤ |x−y|. Again, we apply Lemma 4.1 in Böttcher and Dörfler
(2010) to replace the matrix in (C.58) by an integral operator

∥∥∥∥
1

2π

∫ π

−π
| exp(iω)− 1|−2d0,r(exp(i(n− k)ω))n,k=1,...,Ndω

∥∥∥∥
F

= N‖Kk‖2 (C.59)

with integral operator Kk as in (C.55). The equality follows by Lemma 4.1 in Böttcher and Dörfler
(2010). Combining (C.58) and (C.59) with Lemma C.15 below gives

‖Σrr‖F ≤ c
{
N

1
2 log(N)

1
2 , if d0,r ≤ 1

4 ,

N2d0,r log(N)
1
2 , if d0,r >

1
4 .

Lemma C.14. For d0,r > 0, the operator norm of the integral operator Kk defined in (C.55) can
be bounded as

N‖Kk‖op ≤ cN2d0,r log(N). (C.60)

Proof: In view of the definition of the integral operator norm (see the end of Section 1),

∫ 1

0

∣∣∣∣
∫ 1

0
g(y)kN (x, y)dy

∣∣∣∣
2

dx ≤
∫ 1

0

(∫ 1

0
|g(y)||kN (x, y)| 12 |kN (x, y)| 12dy

)2

dx

≤
∫ 1

0

∫ 1

0
|g(y)|2|kN (x, y)|dy

∫ 1

0
|kN (x, y)|dydx

≤ sup
x∈(0,1)

∫ 1

0
|kN (x, y)|dy

∫ 1

0

∫ 1

0
|g(y)|2|kN (x, y)|dydx

≤ cN2d0,r−1 log(N) sup
y∈(0,1)

∫ 1

0
|kN (x, y)|dx

∫ 1

0
|g(y)|2dy (C.61)

≤ c(N2d0,r−1 log(N))2

∫ 1

0
|g(y)|2dy, (C.62)
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where (C.61) and (C.62) follow since, with explanations given below,

sup
x∈(0,1)

∫ 1

0
|kN (x, y)|dy = sup

y∈(0,1)

∫ 1

0
|kN (x, y)|dx ≤ cN2d0,r−1(log(N) + 1). (C.63)

In order to prove (C.63), we consider zN 6= 0 and zN = 0 separately, with zN = [Nx] − [Ny]. By
Lemma C.16, we get

∫ 1

0
|kN (x, y)|1{zN 6=0}dx ≤ c

∫ 1

0
|[Nx]− [Ny]|2d0,r−11{[Nx]−[Ny]6=0}dx

= c
N∑

i=1

∫ i
N

i−1
N

|i− 1− [Ny]|2d0,r−11{i−1−[Ny] 6=0}dx

= c
1

N

N∑

i=1

|i− 1− [Ny]|2d0,r−11{i−1−[Ny] 6=0}

≤ c 1

N

N∑

i=1

∣∣∣∣i− 1−
[N − 1

2

]∣∣∣∣
2d0,r−1

1{i−1−[N−1
2

]6=0}

= c
1

N

N−1−[N−1
2

]∑

i=−[N−1
2

]

|i|2d0,r−1
1{i 6=0}

≤ cN2d0,r−1 1

N

N−1−[N−1
2

]∑

i=−[N−1
2

]

∣∣∣∣
i

N

∣∣∣∣
2d0,r−1

1{i 6=0}

≤ cN2d0,r−1

N−1−[N−1
2

]∑

i=−[N−1
2

]

|i|−11{i 6=0}

≤ cN2d0,r−1
N∑

i=1

i−1 ≤ cN2d0,r−1(log(N) + 1).

Using (C.68) in Lemma C.16, for zN = 0,

∫ 1

0
|kN (x, y)|21{zN=0}dx ≤

(
Γ(1− 2∆2)

Γ2(1−∆2)

)2 ∫ 1

0
1{[Nx]−[Ny]=0}dx

=

(
Γ(1− 2∆2)

Γ2(1−∆2)

)2 ∫ [Ny]+1
N

[Ny]
N

dx

=

(
Γ(1− 2∆2)

Γ2(1−∆2)

)2 1

N
.

(C.64)

Lemma C.15. For d0,r > 0, the L2 norm of the integral operator Kk defined in (C.55) can be
bounded as

N‖Kk‖2 ≤ c
{
N

1
2 log(N)

1
2 , if d0,r ≤ 1

4 ,

N2d0,r log(N)
1
2 , if d0,r >

1
4 .

(C.65)
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Proof: For zN = [Nx]− [Ny], we consider zN 6= 0 and zN = 0 separately. By Lemma C.16, we get

∫ 1

0

∫ 1

0
|kN (x, y)|21{zN 6=0}dxdy

≤ c
∫ 1

0

∫ 1

0
|[Nx]− [Ny]|4d0,r−21{[Nx]−[Ny]6=0}dxdy

= c
N∑

i=1

N∑

j=1

∫ i
N

i−1
N

∫ j
N

j−1
N

|[Nx]− [Ny]|4d0,r−21{[Nx]−[Ny]6=0}dxdy

= c
1

N2

N∑

i=1

N∑

j=1

|i− j|4d0,r−21{i 6=j}

= c
1

N2

N∑

k=1

(N − k)k4d0,r−2

≤ c
{

1
N

∑N
k=1

(
1− k

N

)
k−1, if d0,r ≤ 1

4 ,

N4d0,r−2
(

1
N

∑N
k=1

(
k
N

)4d0,r−2 − 1
N

∑N
k=1

(
k
N

)4d0,r−1
)
, if d0,r >

1
4 ,

≤ c
{

1
N

∑N
k=1 k

−1, if d0,r ≤ 1
4 ,

N4d0,r−2
∑N

k=1 k
−1, if d0,r >

1
4 ,

≤ c
{

1
N (log(N) + 1), if d0,r ≤ 1

4 ,

N4d0,r−2(log(N) + 1), if d0,r >
1
4 .

Using (C.68) in Lemma C.16 and the same arguments for zN = 0,

∫ 1

0

∫ 1

0
|kN (x, y)|21{zN=0}dxdy ≤

(
Γ(1− 2∆2)

Γ2(1−∆2)

)2 ∫ 1

0

∫ 1

0
1{[Nx]−[Ny]=0}dxdy

=

(
Γ(1− 2∆2)

Γ2(1−∆2)

)2 1

N

following (C.64).

Lemma C.16. For d0,r > 0, the function

kN (x, y) =
1

2π

∫ π

−π
|eiω − 1|−2d0,rei([Nx]−[Ny])ωdω (C.66)

can be bounded as

0 < kN (x, y) ≤ c|zN |2d0,r−1 with zN = [Nx]− [Ny]. (C.67)

Furthermore,
1

2π

∫ π

−π
|eiω − 1|−2d0,rdω ≤ Γ(1− 2∆2)

Γ2(1−∆2)
. (C.68)

Proof: Set zN = [Nx]− [Ny]. Then, the kernel (C.66) satisfies

kN (x, y) =
1

2π

∫ π

−π
|eiω − 1|−2d0,rei([Nx]−[Ny])ωdω
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=
1

2π

∫ π

−π
| exp(iω)− 1|−2d0,r exp(izNω)dω

= (−1)|zN |
Γ(1− 2d0,r)

Γ(1− |zN | − d0,r)Γ(1 + |zN | − d0,r)
(C.69)

= Γ(1− 2d0,r)
sin(πd0,r)

π(|zN |+ d0,r)

Γ(|zN |+ 1 + d0,r)

Γ(|zN |+ 1− d0,r)
. (C.70)

See p. 665 in Böttcher and Virtanen (2007) for equations (C.69) and (C.70). The last relation
shows kN (x, y) > 0. We further have

kN (x, y) < Γ(1− 2d0,r)
sin(πd0,r)

π(|zN |+ d0,r)

(|zN |+ d0,r)
2d0,r

d
2d0,r
0,r

Γ(d0,r + 1)

Γ(d0,r + 1− 2d0,r)
(C.71)

≤ c(|zN |+ d0,r)
2d0,r−1

(d0,r + 1− 2d0,r

d0,r

)2d0,r
(C.72)

≤ c|zN |2d0,r−12. (C.73)

The inequality (C.71) follows by using

Γ(x+ a)

Γ(x+ b)
<
xa−b

xa−b0

Γ(x0 + a)

Γ(x0 + b)
(C.74)

for a > b ≥ 0 and a + b ≥ 1 on [x0,∞) for any x0 > 0; see (3.75) in Qi and Luo (2012). The
inequality (C.74) is applied with x = |zN |+d0,r, x0 = d0,r, a = 1, b = 1−d0,r. Furthermore, (C.72)
follows from the inequality

Γ(x+ a)

xaΓ(x)
≤ 1 (C.75)

for x > 0 and a ∈ (0, 1); see (2.2) in Qi and Luo (2012). The inequality (C.75) is applied with
x = 1− d0,r and a = 2d0,r.

For the integral in (C.68), we get

1

2π

∫ π

−π
| exp(iω)− 1|−2d0,rdω =

Γ(1− 2d0,r)

Γ2(1− d0,r)
=: g(d0.r) ≤

Γ(1− 2∆2)

Γ2(1−∆2)
,

where the equality follows by p. 665 in Böttcher and Virtanen (2007) as in (C.69) and the inequality
since the function g can be checked to be monotonically increasing in d0,r.

D Some additional technical results

This appendix concerns three different kinds of technical results, required to prove our main results.
Section D.1 presents a uniform concentration inequality. The two remaining Sections D.2 and D.3
give some inequalities on matrix norms and the Dirichlet kernel, respectively.

D.1 Uniform concentration inequality

For completeness, we give a slightly modified version of Theorem 1 in Dicker and Erdogdu (2017)
and explain the differences from the original formulation.
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Theorem D.1. Let 0 < R < ∞ and t1(u), . . . , tm(u) be real-valued on [0, R]K ⊆ RK and dif-
ferentiable on (0, R)K ⊆ RK with bounded derivative. Define T (u) = diag(t1(u), . . . , tm(u)) and
Q(u) = V T (u)V ′, where V is a p×m matrix. Let ε = (ε1, . . . , εN )′, where ε1, . . . , εN are indepen-
dent mean 0 sub-Gaussian random variables satisfying

max
i=1,...,N

‖εi‖φ ≤ γ (D.1)

for some constant γ ∈ (0,∞). Then, there exists a constant C ∈ (0,∞) such that

P
(

sup
u∈[0,R]K

|ε′Q(u)ε− E(ε′Q(u)ε)| > ν
)
≤ C exp

(
− 1

C
min

{
ν

γ2T ,
ν2

γ4T 2
i

})
, (D.2)

for ν2 ≥ Cγ4T 2
i K

2, i = 1, 2, where

T = ‖V ′V ‖L1, T1 = ‖V ′V ‖L2, T2 = ‖V ′V ‖FL1

with

L1 = ‖T (0)‖+RK
1
2 sup
u∈[0,R]K

‖T (u)‖ and L2 = ‖T (0)‖F +RK
1
2 sup
u∈[0,R]K

‖T (u)‖F , (D.3)

where T (u) = diag(‖∇t1(u)‖F , . . . , ‖∇tm(u)‖F ).

The statement in Theorem D.1 differs in two points from the original Theorem 1 stated in Dicker
and Erdogdu (2017). First, the condition that the functions ti(u), i = 1 . . . ,m, are differentiable
with bounded derivatives replaces a Lipschitz condition on the functions ti(u), i = 1 . . . ,m; see (1)
in Dicker and Erdogdu (2017). This assumption makes it more convenient to write our results.
Second, Dicker and Erdogdu (2017) get T1 in the bound, which uses the fact that ‖Q(u)‖F =
‖V T (u)V ′‖F ≤ ‖V V ′‖‖T (u)‖F ; see Lemma D.1. In some situations, it turns out to be helpful to
consider T2, which is a consequence of the inequality

‖Q(u)‖F = ‖V T (u)V ′‖F ≤ ‖V V ′‖F ‖T (u)‖;

see again Lemma D.1. Following the proof of Theorem 1 in Dicker and Erdogdu (2017), those
changes yield the concentration inequality in (D.2) with i = 2.

We conclude with a remark which comments on a possibility to slightly generalize the results
in Theorem D.1.

Remark D.1. Theorem D.1 is stated in terms of the matrixQ(u) = V T (u)V ′ under the assumption
that T (u) is a diagonal matrix. The proof of Theorem D.1 relies on a chaining technique with a
subsequent application of the Hanson-Wright inequality (Rudelson and Vershynin, 2013, Theorem
1.1). The Hanson-Wright inequality is applicable for arbitrary matrices. In particular, it does not
require symmetricity or diagonality. However, in order to bound the spectral and Frobenius norms
of T (u) − T (u′), u, u′ ∈ [0, R]K in the proof of Theorem D.1 in terms of the quantities in (D.3),
we need to impose some structural assumptions. As stated in Theorem D.1, Dicker and Erdogdu
(2017) required T (u) to be diagonal. This assumption can be slightly relaxed by supposing that
there exists a representation T (u) = A′T̃ (u)B with A,B ∈ Rm×m unitary and independent of u
and T̃ (u) diagonal since the Frobenius norm and the spectral norm are invariant under unitary
transformation.
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D.2 Matrix norm inequalities

For completeness, we collect here some results on matrix norms.

Lemma D.1. Let B be a positive semidefinite matrix. Then,

‖ABA′‖F ≤ ‖B‖‖A′A‖F and ‖ABA′‖F ≤ ‖A′A‖‖B‖F .

Proof: The Frobenius norm can be rewritten as

‖ABA′‖2F = tr((ABA′)′ABA′) = tr(BA′ABA′A)

≤ λmax(B) tr(BA′AA′A)

≤ λmax(B)2‖A′A‖2F = ‖B‖2‖A′A‖2F ;

see Theorem 1 in Fang, Loparo, and Feng (1994) for the eigenvalue-trace inequality in the second
line. Similarly,

‖ABA′‖2F = tr((ABA′)′ABA′) = tr(A′ABA′AB)

≤ λmax(A′A) tr(A′AB2)

≤ λmax(A′A)2‖B‖2F = ‖A′A‖2‖B‖2F .

Lemma D.2. Let M be a positive semidefinite block-matrix

M =

(
A X
X ′ B

)
.

Then,
‖M‖ ≤ ‖A‖+ ‖B‖ and ‖M‖F ≤ ‖A‖F + ‖B‖F .

Proof: The inequalities are consequences of Lemma 1.1 in Bourin, Lee, and Lin (2012) and the
unitary invariance of the spectral and the Frobenius norm.

D.3 Dirichlet kernel

In this section, we present some results regarding the Dirichlet kernel in (C.27).

Lemma D.3. The Dirichlet kernel in (C.27) satisfies

∫ 2λj

λj
2

|DN (λ− λj)|dλ ≤ 4(π + 2) + 4 log(j).

Proof: Using the representation (C.27) of the Dirichlet kernel, a series of inequalities lead to

∫ 2λj

λj
2

|DN (λ− λj)|dλ =

∫ 2λj

λj
2

∣∣∣∣
sin(N(λ− λj)/2)

sin((λ− λj)/2)

∣∣∣∣ dλ =

∫ λj

−
λj
2

∣∣∣∣
sin(Nλ/2)

sin(λ/2)

∣∣∣∣ dλ

= 2

∫ λj

0

∣∣∣∣
λ

sin(λ/2)

sin(Nλ/2)

λ

∣∣∣∣ dλ ≤ 2
λj

sin(λj/2)

∫ λj

0

∣∣∣∣
sin(Nλ/2)

λ

∣∣∣∣ dλ

= 2
λj

sin(λj/2)

j−1∑

i=0

∫ λi+1

λi

∣∣∣∣
sin(Nλ/2)

λ

∣∣∣∣ dλ ≤ 2π

j−1∑

i=0

∫ λ1

0

∣∣∣∣
sin(N(λ+ λi)/2)

λ+ λi

∣∣∣∣ dλ
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= 2π
(∫ λ1

0

∣∣∣∣
sin(Nλ/2)

λ

∣∣∣∣ dλ+

j−1∑

i=1

∫ λ1

0

∣∣∣∣
sin(N(λ+ λi)/2)

λ+ λi

∣∣∣∣ dλ
)

= 2π
(∫ π

0

∣∣∣∣
sin(λ)

λ

∣∣∣∣ dλ+

∫ λ1

0
sin(Nλ/2)

j−1∑

i=1

1

λ+ λi
dλ
)

≤ 4π + 2π

∫ λ1

0
sin(Nλ/2)dλ

j−1∑

i=1

1

λi
= 4π + 2π

4

N

j−1∑

i=1

1

λi

≤ 4(π + 1) + 4

j∑

i=2

1

i
≤ 4(π + 1) + 4

∫ j

1

1

x
dx

≤ 4(π + 1) + 4(log(j) + 1)

= 4(π + 2) + 4 log(j).

Lemma D.4. The Dirichlet kernel (C.27) satisfies

sup
λj
2
≤λ≤π

( |DN (λ+ λj)|
|DN (λ)|

)2

≤ (cos(λm/2))−2 and sup
2λj≤λ≤π

( |DN (λ− λj)|
|DN (λ)|

)2

≤ 4. (D.4)

Proof: Though very similar, we prove the two inequalities in (D.4) separately. Using the represen-
tation (C.27) of the Dirichlet kernel leads to

sup
λj
2
≤λ≤π

( |DN (λ+ λj)|
|DN (λ)|

)2

= sup
λj
2
≤λ≤π

( | sin(N(λ+ λj)/2) sin(λ/2)|
| sin(Nλ/2) sin((λ+ λj)/2)|

)2

= sup
λj
2
≤λ≤π

( | sin(Nλ/2) sin(λ/2)|
| sin(Nλ/2) sin((λ+ λj)/2)|

)2

(D.5)

= sup
λj
2
≤λ≤π

( | sin(λ/2)|
| sin((λ+ λj)/2)|

)2

=: sup
λj
2
≤λ≤π

f1(λ)

=

(
1

| sin(π/2 + λj/2)|

)2

≤
(

1

| sin((π + λm)/2)|

)2

= (cos(λm/2))−2, (D.6)

where (D.5) follows since | sin(λ)| is π-periodic. The inequality (D.6) follows since the the function

f1(λ) can be checked to be monotonically increasing on the interval (
λj
2 , π)

Similarly,

sup
2λj≤λ≤π

( |DN (λ− λj)|
|DN (λ)|

)2

= sup
2λj≤λ≤π

( | sin(N(λ− λj)/2) sin(λ/2)|
| sin(Nλ/2) sin((λ− λj)/2)|

)2

= sup
2λj≤λ≤π

( | sin(Nλ/2) sin(λ/2)|
| sin(Nλ/2) sin((λ− λj)/2)|

)2

= sup
2λj≤λ≤π

( | sin(λ/2)|
| sin((λ− λj)/2)|

)2

=: sup
2λj≤λ≤π

f2(λ)
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=

( | sin(λj)|
| sin(λj/2)|

)2

≤ 4, (D.7)

where the inequality (D.7) follows since the function f2(λ) is monotonically decreasing on the
interval (2λj , π).

E Results and proofs for linear processes

In this section, we provide an extension of our results for linear processes Xn =
∑

j∈Z Ψj εn−j with∑
j∈Z ‖Ψj ‖2F <∞ and sub-Gaussian innovations.

Remark E.1. It is certainly conceivable to consider other innovations such as sub-exponential or
with finite fourth moments. Concentration inequalities for i.i.d. random vectors which are either
sub-Gaussian, sub-exponential or have finite fourth moments are respectively available in Section
5.2.3 in Rudelson and Vershynin (2013), Lemma 8.3 in Erdős, Yau, and Yin (2012) and Lemma
4.1 in Sun et al. (2018). However, our proofs require a uniform concentration inequality stated in
Theorem D.1. The original proof of Theorem D.1 in Dicker and Erdogdu (2017) involves chaining
techniques and subsequent application of the Hanson-Wright inequality for sub-Gaussian processes.
Replacing the Hanson-Wright inequality by the respective inequalities for sub-exponential variables
or data with finite fourth moments, would lead to uniform concentration inequalities as well.

For completeness, we restate Lemma B.1 here for linear processes. The result only differs from
the one for Gaussian time series by a general constant γ which is determined by the sub-Gaussian
innovations of the linear process in (D.1).

Lemma E.1. Suppose {Xn}n∈Z can be represented as a p-dimensional linear process with spectral
density fX as in (1.1). Then, there are positive constants c1, c2 such that

P
(

sup
D∈Ω
|Ĥrs(D)− EĤrs(D)| > |||G|||ν

)
≤ B(r, s, i), i = 2, . . . , 5, (E.1)

for ν2 ≥ γ4L2
rs,i/(m

2c2), where

B(r, s, i) = c1 exp

(
− c2 min

{
νm

γ2
s∆NLrs,1

,
ν2m2

γ4
s∆2
NL

2
rs,i

})
(E.2)

with r 6= s if i = 3 and Ω is given in (3.10). The constant γ bounds the sub-Gaussian norm as in
(D.1), s∆N is defined in (3.13) and Lrs,i’s as in (D.1).

Proof: The main idea is to consider a truncated version of the linear process and to rewrite it as a
linear mapping of an i.i.d. vector. The truncated version allows us then to write the local Whittle
estimator as a quadratic form in sub-Gaussian random variables.

Introduce a truncated version of the linear process as XL
n =

∑L
j=−L Ψj εn−j . The truncated

version can be expressed as a linear transformation of an i.i.d. vector. Let ψ·r,j and ψr·,j denote
the rth column and row of Ψj and write the data matrix of the truncated process as XL = [XL

1 :
· · · : XL

N ] with XL
n = (XL

1,n, . . . , X
L
p,n)′. Then,

e′rX ′L = (XL
r,1, . . . , X

L
r,N ) =


e′r

L∑

j=−L
Ψj ε1−j , . . . , e

′
r

L∑

j=−L
Ψj εN−j
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=




L∑

j=−L
ψr·,jε1−j , . . . ,

L∑

j=−L
ψr·,jεN−j




=
(
ε′N+L, . . . , ε

′
1, . . . , ε

′
1−L
)




0 0 · · · ψ′r·,−L
...

... . .
. ...

0 ψ′r·,−L
...

ψ′r·,−L
... ψ′r·,L

...
... . .

.
0

... ψ′r·,L
...

ψ′r·,L 0 · · · 0




=: E ′LA′L,r,

(E.3)

where A′L,r is a (N + 2L)p×N matrix. As in (B.7) in the proof for Gaussian random variables in

Lemma B.1, we separate |Ĥrs(D)−EĤrs(D)| into diagonal elements and real and imaginary parts
of the off-diagonal elements. In order to avoid replicating all steps from the proof of Lemma B.1,
we focus here on the real part of the off-diagonal terms. The proofs for the diagonal elements and
the imaginary part of the off-diagonal elements can be adapted analogously and are omitted.

Real part (off-diagonal): For the truncated linear process, the real part of the off-diagonal
elements <(Ĥrs(D)) can be written in terms of (B.5) evaluated at the periodogram of the truncated
process IXL(λj) as

1

m
e′r

m∑

j=1

tj(D)<(IXL(λj))tj(D)es =
1

2πm
e′r

m∑

j=1

tj(D)X ′L(CjC
′
j + SjS

′
j)XLtj(D)es. (E.4)

As in (B.10), we write (E.4) as a quadratic form but now using (e′rX ′L e′sX ′L) = E ′LA′L, where
A′L = (A′L,r A

′
L,s) and set

ΣL = ALA
′
L =

(
AL,r
AL,s

)
(A′L,r A

′
L,s). (E.5)

Due to Lemma E.2, ΣL can also be written as

ΣL =

(
ΣL,rr ΣL,rs

ΣL,sr ΣL,ss

)
with ΣL,rs = (ΣL,rs(n− k))n,k=1,...,N = (EXL

r,kX
L
s,n)n,k=1,...,N .

We further recall from Lemma B.1 the 4m× 2N matrix

R̃m =

(
Rm 02m×N

02m×N Rm

)

with Rm as in (B.8) and the matrix F (dr, ds) = diag(Tr(dr), Ts(ds)) with Tr as in (B.9) and

Mm =

(
0m,m Im
0m,m 0m,m

)
. (E.6)
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Write

e′rX ′L
m∑

j=1

tj,r(dr)(CjC
′
j + SjS

′
j)tj,r(ds)XLes = (e′rX ′L e′sX ′L)R̃′mF (dr, ds)M2mF (dr, ds)R̃m

(
XLer
XLes

)

= (e′rX ′L e′sX ′L)F̃ (dr, ds)

(
XLer
XLes

)

= E ′LA′LF̃ (dr, ds)ALEL
= E ′LRL(dr, ds)EL

(E.7)
with

RL(dr, ds) = A′LF̃ (dr, ds)AL and F̃ (dr, ds) = R̃′mF (dr, ds)M2mF (dr, ds)R̃m.

In order to apply Theorem D.1, we further write

P
(

sup
D∈Ω
|
m∑

j=1

e′r(tj(D)X ′L(CjC
′
j + SjS

′
j)XLtj(D)− E(tj(D)X ′L(CjC

′
j + SjS

′
j)XLtj(D)))es| > πm|||G|||ν

)

= P
(

sup
(dr,ds)∈[ar,br]×[as,bs]

|E ′LRL(dr, ds)EL − E(E ′LRL(dr, ds)EL)| > πm|||G|||ν
)
. (E.8)

Note that the matrix RL(dr, ds) can be rewritten as

RL(dr, ds) = A′LA−1
N,iR̃

′
mA2m,iF (dr, ds)M2mF (dr, ds)A2m,iR̃mA−1

N,iAL (E.9)

for i = 1, . . . , 4 with

Am,1 = diag(cr,1,NIm, c̃s,1,NIm), Am,2 = diag(cr,2,NIm, c̃s,2,NIm),

Am,3 = diag(cr,3,NIm, c̃s,3,NIm), Am,4 = m
1
4Am,1.

(E.10)

The matrices AN,i in (E.9) are defined by replacing Im’s in (E.10) by IN .
We continue to bound (E.8) by applying Theorem D.1. In order to verify the applicability of

Theorem D.1, note that the matrix A2m,iF (dr, ds)M2mF (dr, ds)A2m,i in (E.9) is not diagonal but
can be represented as a unitary transformation of a diagonal matrix as described in (B.24). For this
reason, Theorem D.1 remains applicable due to Remark D.1. In (E.11) below, we apply Theorem
D.1 with K = 2 and R = br − ar ≤ 1 to obtain

P
(

sup
(dr,ds)∈[ar,br]×[as,bs]

|E ′LRL(dr, ds)EL − E(E ′LRL(dr, ds)EL)| > πm|||G|||ν
)

≤ c1 exp

(
− c2 min

{
νm|||G|||
γ2T L1

,
ν2m2|||G|||2
γ4(T Li )2

}) (E.11)

for ν2 ≥ γ4(T Li )2/(c2m
2|||G|||2) and i = 2, . . . , 5 with

T L1 = ‖BL
m,1‖Lrs,1, T Li = ‖BL

m,i‖FLrs,i, T L5 = ‖BL
m,1‖Lrs,5 (E.12)

for i = 2, . . . , 4, where the Lrs,i’s are given in (B.1) and

BL
m,i = R̃mA−1

N,iΣLA−1
N,iR̃

′
m (E.13)

75



for i = 1, . . . , 4, which is due to the relation (E.5). Based on (E.7), an equivalent formulation of
(E.11) can be given as

P
(

sup
(dr,ds)∈[ar,br]×[as,bs]

|e′rX ′LF̃ (dr, ds)XLes − E(e′rX ′LF̃ (dr, ds)XLes)| > πm|||G|||ν
)

≤ c1 exp

(
− c2 min

{
νm|||G|||
γ2T L1

,
ν2m2|||G|||2
γ4(T Li )2

})
.

Then, letting L go to infinity on both sides, Lemmas E.5 and E.3 lead to

P
(

sup
(dr,ds)∈[ar,br]×[as,bs]

|e′rX ′F̃ (dr, ds)X es − E(e′rX ′F̃ (dr, ds)X es)| > πm|||G|||ν
)

≤ c1 exp

(
− c2 min

{
νm|||G|||
γ2T1

,
ν2m2|||G|||2
γ4T 2

i

})
,

which coincides with (B.25). Then, one can use the same arguments as in Lemma B.1 following
(B.25).

The following lemma gathers some relationships between the matrices AL,r in (E.3) and the
autocovariance matrices of the truncated linear process. For completeness, we also state the repre-
sentation of the autocovariance function for the original linear process.

Lemma E.2. The autocovariance matrix and the coefficient matrices of the linear process relate
as follows. For k ≤ n,

ΣL,rs(n− k) =

L−(n−k)∑

j=−L
ψr·,j+(n−k)ψ

′
s·,j , Σrs(n− k) =

∑

j∈Z
ψr·,j+(n−k)ψ

′
s·,j ,

AL,sA
′
L,r = ΣL,rs(k − n).

(E.14)

Furthermore, ΣL,rs(k − n) = (ΣL,sr(n− k))′ and Σrs(k − n) = (Σsr(n− k))′.

Proof: Recall XL
r = (XL

r,1, . . . , X
L
r,N )′ and suppose k ≤ n. Then,

ΣL,rs(k − n) = EXL
r,kX

L′
s,n = E




L∑

j=−L
ψr·,jεn−j

L∑

j=−L
ψs·,jεk−j




=
n+L∑

j1=n−L

k+L∑

j2=k−L
ψr·,n−j1E(εj1ε

′
j2)ψ′s·,k−j2

=

min{k,n}+L∑

j=max{k,n}−L

ψr·,n−jψ
′
s·,k−j

=

L−(n−k)∑

j=−L
ψr·,j+(n−k)ψ

′
s·,j .

Analogously, for the non-truncated version of the linear process leading to the second relation in
(E.14). Finally, the knth element of AL,rA

′
L,s satisfies

(AL,rA
′
L,s)kn =

L−(n−k)∑

j=−L
ψr·,j+(n−k)ψ

′
s·,j = ΣL,rs(n− k).
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The next three lemmas follow the ideas in Sun et al. (2018), but also allow for long-range
dependence and address that we need a uniform concentration inequality.

Lemma E.3. Recall BL
m,i = R̃mA−1

N,iΣLA−1
N,iR̃

′
m in (E.13) with ΣL as in (E.5). Then,

‖BL
m,i‖ → ‖Bm,i‖ and ‖BL

m,i‖F → ‖Bm,i‖F , as L→∞, (E.15)

with Bm,i = R̃mA−1
N,iΣA−1

N,iR̃
′
m as in (B.28).

Proof: It is sufficient to prove ‖BL
m,i −Bm,i‖F → 0 as L→∞ since by triangle inequality

|‖BL
m,i‖F − ‖Bm,i‖F | ≤ ‖BL

m,i −Bm,i‖F ,
|‖BL

m,i‖ − ‖Bm,i‖| ≤ ‖BL
m,i −Bm,i‖ ≤ ‖BL

m,i −Bm,i‖F .

We can further reduce the problem as follows:

‖BL
m,i −Bm,i‖F = ‖R̃mA−1

N,i(ΣL − Σ)A−1
N,iR̃

′
m‖F ≤ ‖A−1

N,i(ΣL − Σ)A−1
N,i‖F (E.16)

≤ ‖A−2
N,i‖‖ΣL − Σ‖F ≤ ‖A−2

N,i‖(‖ΣL,rr − Σrr‖F + ‖ΣL,ss − Σss‖F ). (E.17)

We used Lemma D.1 and ‖R̃m‖2 = 1 in (E.16). The first inequality in (E.17) also follows by Lemma
D.1. Note that AN,i are diagonal matrices which do not depend on L. The second inequality in
(E.17) is due to Lemma D.2. Finally,

‖ΣL,rr − Σrr‖2F

= ‖




∞∑

j=L−(n−k)+1

ψr·,j+(n−k)ψ
′
r·,j +

−L−1∑

j=−∞
ψr·,j+(n−k)ψ

′
r·,j



k,n=1,...,N

‖2F

≤ N2 max
k,n=1,...,N

|
∞∑

i=L+1

ψr·,iψ
′
r·,i−(n−k)|2 +N2 max

k,n=1,...,N
|
∞∑

i=L+1

ψr·,−i+(n−k)ψ
′
r·,−i|2

≤ N2 max
k,n=1,...,N

(
|
∞∑

i=L+1

‖ψr·,i‖F ‖ψr·,i−(n−k)‖F |2 + |
∞∑

i=L+1

‖ψr·,−i+(n−k)‖F ‖ψr·,−i‖F |2
)

(E.18)

≤ N2 max
k,n=1,...,N

( ∞∑

i=L+1

‖ψr·,i‖2F
∞∑

i=L+1

‖ψr·,i−(n−k)‖2F

+

∞∑

i=L+1

‖ψr·,−i+(n−k)‖2F
∞∑

i=L+1

‖ψr·,−i‖2F

)
→ 0 as L→∞, (E.19)

where both (E.18) and (E.19) follow by the Cauchy-Schwarz inequality.

Lemma E.4. Recall the data matrices XL = [XL
1 : · · · : XL

N ] and X = [X1 : · · · : XN ]. Then,

E‖e′rX ′L − e′rX ′‖2F → 0, as L→∞.
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Proof: The expected value can be explicitly calculated as

E‖e′rX ′L − e′rX ′‖2F =

N∑

n=1

E|XL
r,n −Xr,n|2 =

N∑

n=1

E|
∞∑

j=L+1

ψr·,jεn−j +
−L−1∑

j=−∞
ψr·,jεn−j |2

≤ 2
N∑

n=1


E|

∞∑

j=L+1

ψr·,jεn−j |2 + E|
−L−1∑

j=−∞
ψr·,jεn−j |2




= 2
N∑

n=1

∞∑

j1,j2=L+1

(
ψr·,j1E(εn−j1ε

′
n−j2)ψ′r·,j2 + ψr·,−j1E(εn+j1ε

′
n+j2)ψ′r·,−j2

)

= 2N
∞∑

j=L+1

(ψr·,jψ
′
r·,j + ψr·,−jψ

′
r·,−j) <∞

since
∑∞

j=0 ‖Ψj ‖2F <∞. Due to the summability of the last expression, letting L→∞ yields the
desired convergence result.

Lemma E.5. The following convergence result holds:

sup
(dr,ds)∈[ar,br]×[as,bs]

|e′rX ′LF̃ (dr, ds)XLes − E(e′rX ′LF̃ (dr, ds)XLes)|

d→ sup
(dr,ds)∈[ar,br]×[as,bs]

|e′rX ′F̃ (dr, ds)X er − E(e′rX ′F̃ (dr, ds)X er)|, as L→∞.

Proof: Note that Lemma E.4 implies the convergence in probability,

e′rX ′L
p→ e′rX ′.

We write Cb([ar, br]× [as, bs],RN×N ) for the space of RN×N -valued, bounded and continuous func-
tions on [ar, br]× [as, bs]. The space is equipped with the uniform metric

‖A−B‖∞ = sup
(dr,ds)∈[ar,br]×[as,bs]

‖A(dr, ds)−B(dr, ds)‖F .

Since the RN → Cb([ar, br]× [as, bs],R) function x 7→ x′Ax is continuous, the continuous mapping
theorem implies

e′rX ′LF̃ (dr, ds)XLer p→ e′rX ′F̃ (dr, ds)X er. (E.20)

Lemma E.4 also allows us to infer

E(e′rX ′LF̃ (dr, ds)XLer)→ E(e′rX
′
F̃ (dr, ds)X er) (E.21)

since for any matrix function A ∈ Cb([ar, br]× [as, bs],RN×N )

‖E(e′rX ′LAXLer)− E(e′rX ′AX er)‖∞
≤ ‖E(e′rX ′LA(XLer −X er))‖∞ + ‖E((e′rX ′ − e′rX ′L)AX er)‖∞

and

‖E(e′rX ′LA(XLer −X er))‖2∞ ≤ ‖A‖2∞E‖e′rX ′L‖2FE‖e′rX ′L − e′rX ′‖2F → 0.
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Combining (E.20) and (E.21) yields

e′rX ′LF̃ (dr, ds)XLer − E(e′rX ′LF̃ (dr, ds)XLer)
p→ e′rX ′F̃ (dr, ds)X er − E(e′rX ′F̃ (dr, ds)X er).

Convergence in probability implies convergence in distribution. Finally, the continuous mapping
theorem with Cb([ar, br] × [as, bs],RN×N ) → R and A(dr, ds) 7→ sup(dr,ds)∈[ar,br]×[as,bs] |A(dr, ds)|
proves the claim of the lemma.

F Complementary simulation results

F.1 Performance measures

This section presents our simulation results for the thresholding and graphical local Whittle esti-
mators discussed in Section 5. A number of different measures are used to assess the performance
of our estimators.

The first five measures in Tables F.3 and F.4 concern whether the matrix entries are correctly
estimated as zero. We use the standard true positive (TP), false negative (FN), false positive (FP)
and true negative (TN) measures. For instance, TP quantifies how often the respective estimator
correctly detected a nonzero matrix entry as nonzero. For the respective rates, we write TPR, FNR,
TNR and FPR. The fifth metric we consider is the so-called precision calculated as TP/(TP+FP)
which measures the estimator’s accuracy in classifying entries as nonzero. The introduced measures
perform well, even for small sample size N and dimension p and improve with increasing N and p.

The last five measures in Tables F.3 and F.4 consider different distance measures between our
estimators and the true quantities. Besides the mean squared error for the memory parameters
(MSE(D)), we consider the distance measures (Frobenius and spectral norm) used in our main
results to prove consistency of our estimators (Propositions 3.6 and 3.7). The results have been
discussed in more detail in Section 5. Finally, Rel-Frobenius and -spectral denote the ratio between
the distance of our sparse estimator and the distance between the associated nonsparse estimator.
For example, Rel-Frobenius for Tables F.3 and F.4 are respectively defined as

‖Tρ(Ĝ(D̂))−G0‖F
‖Ĝ(D̂)−G0‖F

,
‖P̂ρ(D̂)− P0‖F
‖P̂ (D̂)− P0‖F

, (F.1)

where Ĝ(D̂) is a nonsparse estimator of G0 as defined in (1.6) which is the same as setting the
threshold ρ = 0 and analogously P (D̂) := P̂0(D̂). Rel-spectral can be defined analogously by
replacing the Frobenius norm with the spectral norm in (F.1). In Tables F.3 and F.4, Rel-Frobenius
and -spectral take values smaller than one, which indicates that the denominators in (F.1) take
values larger than the numerators, that is, the nonsparse estimators perform worse for our sparse
DGPs.

79



M
o
d

el
s

M
ea

su
re

s
p

=
2
0

p
=

4
0

p
=

6
0

N
=

20
0

N
=

4
0
0

N
=

1
0
0
0

N
=

2
0
0

N
=

4
0
0

N
=

1
0
0
0

N
=

2
0
0

N
=

4
0
0

N
=

1
0
0
0

th
D

G
P

1

T
P

R
0.

99
1

0
.9

9
9

1
.0

0
0

0
.9

7
6

0
.9

9
9

1
.0

0
0

0
.9

7
5

0
.9

9
9

1
.0

0
0

F
N

R
0.

00
9

0
.0

0
1

0
.0

0
0

0
.0

2
4

0
.0

0
1

0
.0

0
0

0
.0

2
5

0
.0

0
1

0
.0

0
0

T
N

R
0.

99
1

0
.9

9
9

0
.9

9
6

0
.9

9
9

0
.9

9
9

0
.9

9
6

0
.9

9
9

0
.9

9
8

0
.9

9
9

F
P

R
0.

00
9

0
.0

0
1

0
.0

0
4

0
.0

0
1

0
.0

0
1

0
.0

0
4

0
.0

0
1

0
.0

0
2

0
.0

0
1

P
re

ci
si

on
0.

89
9

0
.9

8
4

0
.9

4
9

0
.9

7
3

0
.9

6
4

0
.9

0
0

0
.9

6
0

0
.9

3
6

0
.9

6
3

M
S

E
(D

)
0.

09
5

0
.0

5
0

0
.0

2
2

0
.1

9
3

0
.1

0
2

0
.0

4
5

0
.2

9
5

0
.1

5
5

0
.0

6
9

F
ro

b
en

iu
s

0.
17

4
0
.1

1
0

0
.0

8
8

0
.2

2
8

0
.1

7
1

0
.1

3
9

0
.2

9
4

0
.2

2
8

0
.1

4
6

S
p

ec
tr

al
0.

10
8

0
.0

6
6

0
.0

5
5

0
.1

1
5

0
.0

9
2

0
.0

7
5

0
.1

3
9

0
.1

1
3

0
.0

7
0

R
el

-F
ro

b
en

iu
s

0.
37

9
0
.3

1
8

0
.3

6
7

0
.2

4
8

0
.2

4
7

0
.2

9
3

0
.2

1
3

0
.2

1
9

0
.2

0
4

R
el

-s
p

ec
tr

al
0.

45
0

0
.3

7
8

0
.4

5
2

0
.2

9
4

0
.3

2
1

0
.4

0
1

0
.2

6
8

0
.2

9
9

0
.2

8
2

th
D

G
P

2

T
P

R
0.

96
8

0
.9

9
6

1
.0

0
0

0
.9

4
7

0
.9

9
4

1
.0

0
0

0
.9

3
6

0
.9

9
0

1
.0

0
0

F
N

R
0.

03
2

0
.0

0
4

0
.0

0
0

0
.0

5
3

0
.0

0
7

0
.0

0
0

0
.0

6
4

0
.0

1
0

0
.0

0
0

T
N

R
0.

99
7

0
.9

9
8

0
.9

9
9

0
.9

9
9

0
.9

9
9

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

F
P

R
0.

00
3

0
.0

0
2

0
.0

0
1

0
.0

0
1

0
.0

0
1

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

P
re

ci
si

on
0.

95
8

0
.9

7
2

0
.9

8
7

0
.9

7
3

0
.9

7
8

0
.9

9
3

0
.9

7
7

0
.9

8
5

0
.9

9
2

M
S

E
(D

)
0.

09
5

0
.0

5
2

0
.0

2
3

0
.1

9
7

0
.1

0
4

0
.0

4
7

0
.2

9
3

0
.1

5
7

0
.0

7
3

F
ro

b
en

iu
s

2.
56

9
1
.9

4
9

1
.3

7
4

5
.0

4
7

3
.8

3
7

2
.6

7
1

7
.5

1
2

5
.6

9
2

3
.9

6
0

S
p

ec
tr

al
1.

25
3

0
.9

1
1

0
.6

0
6

1
.9

9
7

1
.4

3
0

0
.9

2
6

2
.6

2
9

1
.8

4
6

1
.1

9
1

R
el

-F
ro

b
en

iu
s

0.
35

8
0
.3

6
4

0
.4

2
1

0
.2

6
6

0
.2

6
5

0
.3

1
1

0
.2

2
3

0
.2

2
0

0
.2

5
9

R
el

-s
p

ec
tr

al
0.

40
3

0
.4

0
4

0
.4

9
7

0
.3

0
3

0
.2

9
7

0
.3

6
5

0
.2

4
7

0
.2

5
0

0
.2

9
8

th
D

G
P

3

T
P

R
0.

93
9

0
.9

9
5

1
.0

0
0

0
.8

7
7

0
.9

9
0

1
.0

0
0

0
.8

3
5

0
.9

8
2

1
.0

0
0

F
N

R
0.

06
1

0
.0

0
5

0
.0

0
0

0
.1

2
3

0
.0

1
0

0
.0

0
0

0
.1

6
5

0
.0

1
8

0
.0

0
0

T
N

R
0.

98
1

0
.9

8
0

0
.9

9
0

0
.9

9
5

0
.9

9
2

0
.9

9
7

0
.9

9
7

0
.9

9
7

0
.9

9
8

F
P

R
0.

01
9

0
.0

2
0

0
.0

1
0

0
.0

0
5

0
.0

0
8

0
.0

0
3

0
.0

0
3

0
.0

0
3

0
.0

0
2

P
re

ci
si

on
0.

90
0

0
.9

0
0

0
.9

4
5

0
.9

3
0

0
.9

1
3

0
.9

6
9

0
.9

4
1

0
.9

4
3

0
.9

6
2

M
S

E
(D

)
0.

10
6

0
.0

6
4

0
.0

3
4

0
.2

1
5

0
.1

2
8

0
.0

6
8

0
.3

2
3

0
.1

9
2

0
.1

0
0

F
ro

b
en

iu
s

2.
66

6
2
.2

1
1

1
.8

1
7

4
.9

4
3

3
.9

6
5

3
.0

7
3

7
.2

3
1

5
.6

9
5

4
.3

0
2

S
p

ec
tr

al
1.

17
0

0
.9

3
5

0
.7

6
9

1
.8

4
8

1
.3

4
2

0
.9

5
2

2
.4

7
1

1
.7

5
8

1
.1

5
5

R
el

-F
ro

b
en

iu
s

0.
69

0
0
.7

2
5

0
.8

0
3

0
.5

5
4

0
.5

7
6

0
.6

6
5

0
.4

8
4

0
.4

8
9

0
.5

8
5

R
el

-s
p

ec
tr

al
0.

66
5

0
.7

0
1

0
.7

5
0

0
.4

7
3

0
.5

2
0

0
.6

1
9

0
.3

7
8

0
.4

1
6

0
.5

2
4

T
ab

le
F

.3
:

S
im

u
la

ti
on

re
su

lt
s

fo
r

th
e

th
re

sh
ol

d
in

g
lo

ca
l

W
h

it
tl

e
es

ti
m

at
o
r.

80



M
o
d

el
s

M
ea

su
re

s
p

=
2
0

p
=

4
0

p
=

6
0

N
=

20
0

N
=

4
0
0

N
=

1
0
0
0

N
=

2
0
0

N
=

4
0
0

N
=

1
0
0
0

N
=

2
0
0

N
=

4
0
0

N
=

1
0
0
0

D
G

P
1

T
P

R
0.

95
7

0
.9

9
4

1
.0

0
0

0
.9

4
3

0
.9

8
0

1
.0

0
0

0
.9

4
0

0
.9

7
3

1
.0

0
0

F
N

R
0.

04
3

0
.0

0
6

0
.0

0
0

0
.0

5
7

0
.0

2
0

0
.0

0
0

0
.0

6
0

0
.0

2
7

0
.0

0
0

T
N

R
1.

00
0

1
.0

0
0

1
.0

0
0

0
.9

1
2

1
.0

0
0

1
.0

0
0

0
.8

8
7

0
.9

4
2

1
.0

0
0

F
P

R
0.

00
0

0
.0

0
0

0
.0

0
0

0
.0

8
8

0
.0

0
0

0
.0

0
0

0
.1

1
3

0
.0

5
8

0
.0

0
0

P
re

ci
si

on
1.

00
0

0
.9

9
8

1
.0

0
0

0
.9

1
0

0
.9

9
8

0
.9

9
9

0
.7

7
6

0
.9

4
1

0
.9

9
8

M
S

E
(D

)
0.

09
5

0
.0

5
0

0
.0

2
2

0
.1

9
3

0
.1

0
2

0
.0

4
5

0
.2

9
2

0
.1

5
7

0
.0

7
0

F
ro

b
en

iu
s

4.
91

1
3
.1

9
7

2
.3

2
3

7
.4

9
0

5
.0

6
6

3
.3

6
7

1
0
.3

6
5

6
.7

6
0

4
.0

8
0

S
p

ec
tr

al
3.

00
6

1
.5

9
2

1
.1

3
7

3
.8

9
2

2
.4

1
1

1
.3

3
5

4
.4

9
8

3
.4

4
6

1
.4

0
7

R
el

-F
ro

b
en

iu
s

0.
18

4
0
.2

0
9

0
.2

5
8

0
.0

6
5

0
.1

1
2

0
.1

5
9

0
.0

1
2

0
.0

6
4

0
.1

0
8

R
el

-s
p

ec
tr

al
0.

16
7

0
.1

7
7

0
.2

3
8

0
.0

5
3

0
.1

0
3

0
.1

3
9

0
.0

0
7

0
.0

6
3

0
.0

8
9

D
G

P
2

T
P

R
0.

93
5

0
.9

8
9

1
.0

0
0

0
.9

5
6

0
.9

8
8

1
.0

0
0

0
.9

6
9

0
.9

8
5

1
.0

0
0

F
N

R
0.

06
5

0
.0

1
1

0
.0

0
0

0
.0

4
4

0
.0

1
2

0
.0

0
0

0
.0

3
1

0
.0

1
5

0
.0

0
0

T
N

R
1.

00
0

1
.0

0
0

1
.0

0
0

0
.7

8
2

1
.0

0
0

1
.0

0
0

0
.5

5
6

0
.9

5
8

1
.0

0
0

F
P

R
0.

00
0

0
.0

0
0

0
.0

0
0

0
.2

1
8

0
.0

0
0

0
.0

0
0

0
.4

4
4

0
.0

4
2

0
.0

0
0

P
re

ci
si

on
1.

00
0

1
.0

0
0

0
.9

9
9

0
.7

8
7

1
.0

0
0

0
.9

9
9

0
.5

5
0

0
.9

5
9

1
.0

0
0

M
S

E
(D

)
0.

09
5

0
.0

5
3

0
.0

2
4

0
.1

9
6

0
.1

0
3

0
.0

4
7

0
.2

9
2

0
.1

5
9

0
.0

7
1

F
ro

b
en

iu
s

0.
91

3
0
.6

7
0

0
.5

7
4

1
.3

0
5

0
.9

4
8

0
.8

0
0

1
.7

3
5

1
.1

9
2

0
.9

7
5

S
p

ec
tr

al
0.

58
6

0
.3

6
6

0
.3

2
5

0
.6

6
0

0
.4

1
4

0
.3

5
4

0
.7

7
5

0
.4

9
5

0
.3

7
0

R
el

-F
ro

b
en

iu
s

0.
21

9
0
.2

7
3

0
.3

8
6

0
.0

7
0

0
.1

3
4

0
.2

3
6

0
.0

1
4

0
.0

7
2

0
.1

6
3

R
el

-s
p

ec
tr

al
0.

21
7

0
.2

5
9

0
.4

2
6

0
.0

5
8

0
.1

1
4

0
.2

3
6

0
.0

0
9

0
.0

5
9

0
.1

5
2

D
G

P
3

T
P

R
0.

35
0

0
.3

8
0

0
.6

5
9

0
.5

3
4

0
.3

6
1

0
.5

9
9

0
.6

4
8

0
.4

1
0

0
.5

3
9

F
N

R
0.

65
0

0
.6

2
0

0
.3

4
1

0
.4

6
6

0
.6

3
9

0
.4

0
1

0
.3

5
2

0
.5

9
0

0
.4

6
1

T
N

R
1.

00
0

1
.0

0
0

0
.9

5
0

0
.7

1
4

1
.0

0
0

0
.9

8
7

0
.5

4
0

0
.9

1
5

0
.9

9
6

F
P

R
0.

00
0

0
.0

0
0

0
.0

5
0

0
.2

8
6

0
.0

0
0

0
.0

1
3

0
.4

6
0

0
.0

8
5

0
.0

0
4

P
re

ci
si

on
0.

99
9

0
.9

9
7

0
.7

5
7

0
.7

3
5

0
.9

9
9

0
.8

1
5

0
.5

5
9

0
.9

1
9

0
.8

7
6

M
S

E
(D

)
0.

09
3

0
.0

4
8

0
.0

2
2

0
.1

8
8

0
.0

9
8

0
.0

4
4

0
.2

8
6

0
.1

4
9

0
.0

6
7

F
ro

b
en

iu
s

1.
54

7
1
.4

8
9

1
.2

0
1

2
.2

0
4

2
.1

2
2

1
.7

7
2

2
.7

2
7

2
.6

1
1

2
.2

8
1

S
p

ec
tr

al
0.

60
8

0
.5

8
2

0
.4

8
9

0
.6

3
8

0
.6

0
0

0
.5

2
3

0
.6

6
8

0
.6

1
2

0
.5

4
5

R
el

-F
ro

b
en

iu
s

0.
38

0
0
.6

1
5

0
.7

9
0

0
.1

2
6

0
.3

0
6

0
.5

2
3

0
.0

2
4

0
.1

6
1

0
.3

8
3

R
el

-s
p

ec
tr

al
0.

23
5

0
.4

2
1

0
.6

4
9

0
.0

6
0

0
.1

6
6

0
.3

5
2

0
.0

0
8

0
.0

7
5

0
.2

2
3

T
ab

le
F

.4
:

S
im

u
la

ti
on

re
su

lt
s

fo
r

th
e

gr
ap

h
ic

al
lo

ca
l

W
h

it
tl

e
es

ti
m

at
o
r.

81



F.2 Illustration: Rate of convergence

To illustrate our non-asymptotic results numerically, consider the result in Corollary A.1. Corollary
A.1 is a consequence of our main result Proposition 3.5 for only short- or long-range dependence,
that is, the true memory parameters satisfy D0 < 0. Then, using (A.4) with R1 ≡ R11 and
m = N .8, we get

‖Ĝ(D̂)−G0‖max ≈
√

log p

N .8×(1−2∆2)

with high probability. Taking the log-transformation gives

log(‖Ĝ(D̂)−G0‖max) ≈ .5
(

log(log(p))− .8(1− 2∆2) logN
)
. (F.2)

We checked this relationship by considering the model thDGP3 with sample sizes N = 200, 400,
600, 800, 1000, 1200, 1400, 1600, 1800, 2000 and dimensions p = 20, 40, 60, 80, 100, 120.

In Figure 8 we fixed the sample size as N = 200, 400, 600 and consider (F.2) as a function in
log(log(p)). The expected slope is .5 in the log-log plot. Figure 8 shows that the estimated slope is
close to .5.

In Figure 9 we fixed the dimension p = 20, 30, 40. In this setting, the expected slope for logN
is −.104 calculated as

.5× .8(1− 2∆2) = .4× (1− 2 max
r=1,...,r

d̂r) = .104,

where we chose ∆2 as the largest LRD parameter across all dimensions. In Figure 9, it can be seen
that the slope is close to −.104, as expected.
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Figure 8: The rate of convergence with fixed sample size N . Theoretically expected slope is .5.

F.3 Univariate versus multivariate estimation of the memory parameters

From a theoretical perspective, Remark 2.2 argues that our proofs remain valid for multivariate
estimation of D0. However, an additional p would appear in the bounds and significantly weaken
the results.

In Table F.5 below, we report on a small simulation study evaluating the efficiency of our
proposed estimator compared to multivariate estimation and also a shrinkage estimator. The
shrinkage estimator is obtained by plugging the thresholded estimator Tρ(Ĝ(D)) in (2.2) into the
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Figure 9: The rate of convergence with fixed dimension p. Theoretically expected slope is −.104.

local Whittle estimation for D0 in (1.5) and is labeled as “Threshold” in Table F.5. We use the
same DGPs as introduced in Section 5 with sample size N = 200 and dimension p = 40. For
comparison we use the mean squared error of the estimated D0 (MSE(D)) and study the impact
on P̂ (D̂) of the different estimation procedures by calculating the Frobenius and spectral distances
to the true P0. The computational time is measured as the duration time for five repetitions.

Models Methods MSE(D) Frobenius Spectral Time

DGP1
Univariate 0.190 7.760 3.977 2 sec

Multivariate 0.190 7.745 3.964 8 sec
Threshold 0.189 7.744 3.964 20 sec

DGP2
Univariate 0.196 1.413 0.707 2 sec

Multivariate 0.287 1.478 0.751 146 sec
Threshold 0.196 1.449 0.717 270 sec

DGP3
Univariate 0.186 2.206 0.642 2 sec

Multivariate 0.298 2.218 0.646 102 sec
Threshold 0.194 2.201 0.639 240 sec

Table F.5: Performance measures for different estimation methods of the memory parameters D0.

As can be seen in the table, estimating the memory parameters D0 univariately performs well
compared to the other methods (Multivariate, Threshold). Furthermore, the univariate estimation
reduces computational time dramatically compared to multivariate or thresholded estimation. Note
also that the mean squared error appears to be larger for multivariate estimation than for univariate
estimation. One would expect the asymptotic variance of the multivariate estimators for D0 to be
smaller compared to the univariate case which is not reflected in the simulation results. We suspect
that this may be due to numerical optimization issues with multivariate estimation. The Threshold
method seems to perform slightly better than multivariate estimation. Since all our DGPs are highly
sparse (see Figure 1), it may not come as a surprise that the univariate and thresholded estimators
perform well.

F.4 Modified precision matrix estimators and CLIME

In this section, we compare the performance of our graphical local Whittle estimator for the preci-
sion matrix with the alternative estimators presented in Section 3.3. The modified precision matrix
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estimators in Section 3.3 are an estimator based on the coherence matrix (Section 3.3.1) and a local
Whittle CLIME estimator (Section 3.3.2).

For the coherence-based graphical local Whittle, we use Algorithm 2 as introduced in Section
4.2. Similar to the graphical local Whittle estimator, the local Whittle CLIME estimator can be
computed by using an ADMM algorithm. Wang, Banerjee, Hsieh, Ravikumar, and Dhillon (2013)
proposed an algorithm for sparse inverse covariance matrix estimation. We modify their Algorithm
1 to our setting, using it for estimation in the spectral domain. The details can be found in
Algorithm 3. For the algorithm, recall the function shrink(M,ν) = sign(Mrs) max(|Mrs| − ν, 0) for
a matrix M = (Mrs)r,s=1,...,p and some ν ≥ 0.

Algorithm 3: Alternating direction method of multipliers (ADMM) algorithm for local
Whittle CLIME estimator

Input: Initial estimator P 0 = diag((Ĝ(D̂) + .1Ip)
−1), V 0 = Y 0 = 0, µ, ρ.

Output: Sparse estimation of P .
Repeat until convergence:
for k = 0, 1, . . . do

1. P k+1 = shrink(P k − V k, µ).
2. Uk+1 = Ĝ(D̂)P k+1 + Y k.
3. Zk+1 = Y k + shrink(Ip − Uk+1, λ).
4. Y k+1 = Uk+1 − Zk+1.
5. V k+1 = Ĝ(D̂)(2Y k+1 − Y k)(ρµ).

end

Comparison results are summarized in Tables F.6–F.8. Note that we also present the simula-
tion results for our graphical local Whittle estimator (LW-GLASSO). All methods’ performances
improve with increasing sample size. The modified precision matrix estimator, labeled as LW-
GLASSO (modified) in Tables F.6–F.8 performs very similar to the classical LW-GLASSO. Our
study does not reveal any significant differences between the two estimators. On the other hand,
the local Whittle CLIME estimator tends to result in higher TNR while the LW-GLASSO gives
higher TPR. For example, in Table F.8 when p = 60 and N = 200, LW-GLASSO gives .54 for TNR
while LW-CLIME gives .999. It means that LW-GLASSO is good at finding a nonzero coefficient
as nonzero, while LW-CLIME finds a zero coefficient as zero.
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Figure 10: Sparsity pattern when SRD model is used for LRD simulated data.

F.5 Comparison to existing methods

In this section we emphasize the relevance of considering estimators which account for strong
temporal correlation beyond short-range dependence. Sun et al. (2018) consider possibly high-
dimensional time series under short-range dependence (D0 ≡ 0) and study estimation of the spectral
density and its inverse. See also Section 3.5 for a detailed comparison. We conduct a simulation
study with synthetic, long-range dependent data and apply the estimators proposed in Sun et al.
(2018). More precisely, we simulated long-range dependent data based on thDGP3 and DGP2 in
Sections 5.1 and 5.2 following the sparsity pattern in Figure 1. We then applied the graphical
LASSO and thresholded long-run variance estimators in Sun et al. (2018) to recover the sparsity
patterns. As it can be seen from Figure 10, the estimators for short-range dependent models
(right column) perform poorly and fail to find the true underlying zero coefficients. More detailed
performance measures are provided in Table F.9 indicating that the estimators for short-range
dependent models perform poorly under long-range dependence.

88



M
o
d

el
s

M
et

h
o
d

s
M

ea
su

re
s

p
=

2
0

p
=

4
0

p
=

6
0

N
=

2
0
0

N
=

4
0
0

N
=

1
0
0
0

N
=

2
0
0

N
=

4
0
0

N
=

1
0
0
0

N
=

2
0
0

N
=

4
0
0

N
=

1
0
0
0

D
G

P
2

L
W

-G
L

A
S

S
O

(L
R

D
)

T
P

R
0.

9
6
9

0
.9

9
8

1
.0

0
0

0
.9

8
0

0
.9

9
8

1
.0

0
0

0
.9

8
9

0
.9

9
6

1
.0

0
0

F
N

R
0.

0
3
1

0
.0

0
2

0
.0

0
0

0
.0

2
0

0
.0

0
3

0
.0

0
0

0
.0

1
1

0
.0

0
4

0
.0

0
0

T
N

R
1.

0
0
0

0
.9

9
9

0
.9

9
8

0
.6

5
4

1
.0

0
0

0
.9

9
9

0
.3

2
5

0
.9

4
0

1
.0

0
0

F
P

R
0.

0
0
0

0
.0

0
1

0
.0

0
2

0
.3

4
6

0
.0

0
0

0
.0

0
1

0
.6

7
5

0
.0

6
0

0
.0

0
0

P
re

ci
si

on
0.

9
9
7

0
.9

9
0

0
.9

8
0

0
.6

6
1

0
.9

9
1

0
.9

8
5

0
.3

1
6

0
.9

3
6

0
.9

9
0

G
L

A
S

S
O

(S
R

D
)

T
P

R
1.

0
0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

1
.0

0
0

F
N

R
0.

0
0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

0
.0

0
0

T
N

R
0.

1
1
7

0
.2

8
4

0
.5

5
9

0
.0

0
6

0
.1

0
8

0
.3

4
8

0
.0

0
1

0
.0

1
3

0
.2

5
9

F
P

R
0.

8
8
3

0
.7

1
6

0
.4

4
1

0
.9

9
4

0
.8

9
2

0
.6

5
2

0
.9

9
9

0
.9

8
7

0
.7

4
1

P
re

ci
si

on
0.

0
6
8

0
.0

8
5

0
.1

3
8

0
.0

3
0

0
.0

3
4

0
.0

4
6

0
.0

2
0

0
.0

2
0

0
.0

2
7

th
D

G
P

3

T
h

re
sh

ol
d

in
g

(L
R

D
)

T
P

R
0.

9
3
8

0
.9

9
6

1
.0

0
0

0
.8

8
4

0
.9

9
2

1
.0

0
0

0
.8

4
3

0
.9

8
7

1
.0

0
0

F
N

R
0.

0
6
2

0
.0

0
4

0
.0

0
0

0
.1

1
6

0
.0

0
8

0
.0

0
0

0
.1

5
7

0
.0

1
3

0
.0

0
0

T
N

R
0.

9
8
1

0
.9

8
1

0
.9

8
9

0
.9

9
4

0
.9

9
3

0
.9

9
7

0
.9

9
7

0
.9

9
6

0
.9

9
8

F
P

R
0.

0
1
9

0
.0

1
9

0
.0

1
1

0
.0

0
6

0
.0

0
7

0
.0

0
3

0
.0

0
3

0
.0

0
4

0
.0

0
2

P
re

ci
si

on
0.

8
9
7

0
.9

0
6

0
.9

4
3

0
.9

2
7

0
.9

2
1

0
.9

6
9

0
.9

4
2

0
.9

3
5

0
.9

5
6

T
h

re
sh

ol
d

in
g

(S
R

D
)

T
P

R
0.

5
8
6

0
.7

8
3

0
.9

7
9

0
.4

5
3

0
.5

8
4

0
.8

8
2

0
.4

1
2

0
.4

9
5

0
.8

0
2

F
N

R
0.

4
1
4

0
.2

1
7

0
.0

2
1

0
.5

4
7

0
.4

1
6

0
.1

1
8

0
.5

8
8

0
.5

0
5

0
.1

9
8

T
N

R
0.

9
8
9

0
.9

8
3

0
.9

7
1

0
.9

9
7

0
.9

9
5

0
.9

9
0

0
.9

9
8

0
.9

9
8

0
.9

9
5

F
P

R
0.

0
1
1

0
.0

1
7

0
.0

2
9

0
.0

0
3

0
.0

0
5

0
.0

1
0

0
.0

0
2

0
.0

0
2

0
.0

0
5

P
re

ci
si

on
0.

9
1
4

0
.8

9
8

0
.8

5
8

0
.9

2
4

0
.9

1
6

0
.8

8
2

0
.9

3
5

0
.9

4
0

0
.8

9
6

T
ab

le
F

.9
:

P
er

fo
rm

an
ce

m
ea

su
re

s
w

h
en

S
R

D
m

o
d

el
s

ar
e

u
se

d
fo

r
L

R
D

m
o
d

el
s.

89



References

Baek, C. and Pipiras, V. On distinguishing multiple changes in mean and long-range dependence using local
Whittle estimation. Electronic Journal of Statistics, 8(1):931–964, 2014.

Baek, C., Kechagias, S., and Pipiras, V. Asymptotics of bivariate local Whittle estimators with applications
to fractal connectivity. Journal of Statistical Planning and Inference, 205:245–268, 2020.

Baek, C., Kechagias, S., and Pipiras, V. Semiparametric, parametric, and possibly sparse models for multi-
variate long-range dependence. In Wavelets and Sparsity XVII, volume 10394, page 103941S. International
Society for Optics and Photonics, 2017.

Basu, S. and Michailidis, G. Regularized estimation in sparse high-dimensional time series models. The
Annals of Statistics, 43(4):1535–1567, 2015.

Beran, J., Feng, Y., Ghosh, S., and Kulik, R. Long-Memory Processes: Probabilistic Properties and Statistical
Methods. Springer-Verlag Berlin Heidelberg, 2013.

Bickel, P. J. and Levina, E. Regularized estimation of large covariance matrices. The Annals of Statistics,
36(1):199–227, 2008a.

Bickel, P. J. and Levina, E. Covariance regularization by thresholding. The Annals of Statistics, 36(6):
2577–2604, 2008b.

Bien, J. and Tibshirani, R. J. Sparse estimation of a covariance matrix. Biometrika, 98(4):807–820, 2011.

Bordier, C., Nicolini, C., and Bifone, A. Graph analysis and modularity of brain functional connectivity
networks: searching for the optimal threshold. Frontiers in Neuroscience, 11:441, 2017.
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